| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp42 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp42 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp32 418 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp55 442 ltexprlem7 10971 fzdif1 13542 iscatd 17610 isposd 18259 pospropd 18262 mulgghm2 21362 ordtbaslem 23051 txbas 23430 nocvxminlem 27665 frgrncvvdeqlem8 30208 grporcan 30420 chirredlem1 32292 cvxpconn 35202 cvxsconn 35203 rngonegmn1l 37908 prnc 38034 reuopreuprim 47500 uhgrimisgrgriclem 47903 |
| Copyright terms: Public domain | W3C validator |