MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 426
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 418 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 406 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp55  442  ltexprlem7  10995  fzdif1  13566  iscatd  17634  isposd  18283  pospropd  18286  mulgghm2  21386  ordtbaslem  23075  txbas  23454  nocvxminlem  27689  frgrncvvdeqlem8  30235  grporcan  30447  chirredlem1  32319  cvxpconn  35229  cvxsconn  35230  rngonegmn1l  37935  prnc  38061  reuopreuprim  47527  uhgrimisgrgriclem  47930
  Copyright terms: Public domain W3C validator