MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 430
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 422 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 410 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  imp55  446  ltexprlem7  10656  iscatd  17176  isposd  17830  pospropd  17833  mulgghm2  20463  ordtbaslem  22085  txbas  22464  frgrncvvdeqlem8  28389  grporcan  28599  chirredlem1  30471  cvxpconn  32917  cvxsconn  32918  nocvxminlem  33709  rngonegmn1l  35836  prnc  35962  reuopreuprim  44651
  Copyright terms: Public domain W3C validator