MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 426
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 418 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 406 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp55  442  ltexprlem7  11002  fzdif1  13573  iscatd  17641  isposd  18290  pospropd  18293  mulgghm2  21393  ordtbaslem  23082  txbas  23461  nocvxminlem  27696  frgrncvvdeqlem8  30242  grporcan  30454  chirredlem1  32326  cvxpconn  35236  cvxsconn  35237  rngonegmn1l  37942  prnc  38068  reuopreuprim  47531  uhgrimisgrgriclem  47934
  Copyright terms: Public domain W3C validator