MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 428
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 420 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 408 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  imp55  444  ltexprlem7  10844  iscatd  17427  isposd  18086  pospropd  18090  mulgghm2  20743  ordtbaslem  22384  txbas  22763  frgrncvvdeqlem8  28715  grporcan  28925  chirredlem1  30797  cvxpconn  33249  cvxsconn  33250  nocvxminlem  34017  rngonegmn1l  36143  prnc  36269  reuopreuprim  45036
  Copyright terms: Public domain W3C validator