MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 426
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 418 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 406 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp55  442  ltexprlem7  11111  iscatd  17731  isposd  18393  pospropd  18397  mulgghm2  21510  ordtbaslem  23217  txbas  23596  nocvxminlem  27840  frgrncvvdeqlem8  30338  grporcan  30550  chirredlem1  32422  cvxpconn  35210  cvxsconn  35211  rngonegmn1l  37901  prnc  38027  reuopreuprim  47400  uhgrimisgrgriclem  47782
  Copyright terms: Public domain W3C validator