| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp42 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp42 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp32 418 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp55 442 ltexprlem7 10933 fzdif1 13505 iscatd 17579 isposd 18228 pospropd 18231 mulgghm2 21413 ordtbaslem 23103 txbas 23482 nocvxminlem 27717 frgrncvvdeqlem8 30286 grporcan 30498 chirredlem1 32370 cvxpconn 35286 cvxsconn 35287 rngonegmn1l 37989 prnc 38115 reuopreuprim 47565 uhgrimisgrgriclem 47969 |
| Copyright terms: Public domain | W3C validator |