| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp42 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp42 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp32 418 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp55 442 ltexprlem7 10971 fzdif1 13542 iscatd 17614 isposd 18263 pospropd 18266 mulgghm2 21418 ordtbaslem 23108 txbas 23487 nocvxminlem 27723 frgrncvvdeqlem8 30285 grporcan 30497 chirredlem1 32369 cvxpconn 35222 cvxsconn 35223 rngonegmn1l 37928 prnc 38054 reuopreuprim 47520 uhgrimisgrgriclem 47923 |
| Copyright terms: Public domain | W3C validator |