MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 426
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 418 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 406 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp55  442  ltexprlem7  10971  fzdif1  13542  iscatd  17614  isposd  18263  pospropd  18266  mulgghm2  21418  ordtbaslem  23108  txbas  23487  nocvxminlem  27723  frgrncvvdeqlem8  30285  grporcan  30497  chirredlem1  32369  cvxpconn  35222  cvxsconn  35223  rngonegmn1l  37928  prnc  38054  reuopreuprim  47520  uhgrimisgrgriclem  47923
  Copyright terms: Public domain W3C validator