MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 428
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 420 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 408 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  imp55  444  ltexprlem7  11037  iscatd  17617  isposd  18276  pospropd  18280  mulgghm2  21046  ordtbaslem  22692  txbas  23071  nocvxminlem  27279  frgrncvvdeqlem8  29559  grporcan  29771  chirredlem1  31643  cvxpconn  34233  cvxsconn  34234  rngonegmn1l  36809  prnc  36935  reuopreuprim  46194
  Copyright terms: Public domain W3C validator