| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp42 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp42 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp32 418 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imp55 442 ltexprlem7 10936 fzdif1 13508 iscatd 17579 isposd 18228 pospropd 18231 mulgghm2 21383 ordtbaslem 23073 txbas 23452 nocvxminlem 27688 frgrncvvdeqlem8 30250 grporcan 30462 chirredlem1 32334 cvxpconn 35215 cvxsconn 35216 rngonegmn1l 37921 prnc 38047 reuopreuprim 47510 uhgrimisgrgriclem 47914 |
| Copyright terms: Public domain | W3C validator |