MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp42 Structured version   Visualization version   GIF version

Theorem imp42 426
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp42 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp32 418 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜃𝜏))
32imp 406 1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imp55  442  ltexprlem7  10933  fzdif1  13505  iscatd  17579  isposd  18228  pospropd  18231  mulgghm2  21413  ordtbaslem  23103  txbas  23482  nocvxminlem  27717  frgrncvvdeqlem8  30286  grporcan  30498  chirredlem1  32370  cvxpconn  35286  cvxsconn  35287  rngonegmn1l  37989  prnc  38115  reuopreuprim  47565  uhgrimisgrgriclem  47969
  Copyright terms: Public domain W3C validator