| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgghm2 | Structured version Visualization version GIF version | ||
| Description: The powers of a group element give a homomorphism from ℤ to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| mulgghm2.m | ⊢ · = (.g‘𝑅) |
| mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
| mulgghm2.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| mulgghm2 | ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝑅 ∈ Grp) | |
| 2 | zringgrp 21394 | . . 3 ⊢ ℤring ∈ Grp | |
| 3 | 1, 2 | jctil 519 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (ℤring ∈ Grp ∧ 𝑅 ∈ Grp)) |
| 4 | mulgghm2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | mulgghm2.m | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
| 6 | 4, 5 | mulgcl 19005 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
| 7 | 6 | 3expa 1118 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
| 8 | 7 | an32s 652 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 1 ) ∈ 𝐵) |
| 9 | mulgghm2.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 10 | 8, 9 | fmptd 7068 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹:ℤ⟶𝐵) |
| 11 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 12 | 4, 5, 11 | mulgdir 19020 | . . . . . . . 8 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ 𝐵)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 13 | 12 | 3exp2 1355 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (𝑥 ∈ ℤ → (𝑦 ∈ ℤ → ( 1 ∈ 𝐵 → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 )))))) |
| 14 | 13 | imp42 426 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 1 ∈ 𝐵) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 15 | 14 | an32s 652 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 16 | zaddcl 12549 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ) |
| 18 | oveq1 7376 | . . . . . . 7 ⊢ (𝑛 = (𝑥 + 𝑦) → (𝑛 · 1 ) = ((𝑥 + 𝑦) · 1 )) | |
| 19 | ovex 7402 | . . . . . . 7 ⊢ ((𝑥 + 𝑦) · 1 ) ∈ V | |
| 20 | 18, 9, 19 | fvmpt 6950 | . . . . . 6 ⊢ ((𝑥 + 𝑦) ∈ ℤ → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 )) |
| 21 | 17, 20 | syl 17 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 )) |
| 22 | oveq1 7376 | . . . . . . . 8 ⊢ (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 )) | |
| 23 | ovex 7402 | . . . . . . . 8 ⊢ (𝑥 · 1 ) ∈ V | |
| 24 | 22, 9, 23 | fvmpt 6950 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (𝐹‘𝑥) = (𝑥 · 1 )) |
| 25 | oveq1 7376 | . . . . . . . 8 ⊢ (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 )) | |
| 26 | ovex 7402 | . . . . . . . 8 ⊢ (𝑦 · 1 ) ∈ V | |
| 27 | 25, 9, 26 | fvmpt 6950 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → (𝐹‘𝑦) = (𝑦 · 1 )) |
| 28 | 24, 27 | oveqan12d 7388 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 29 | 28 | adantl 481 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 30 | 15, 21, 29 | 3eqtr4d 2774 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
| 31 | 30 | ralrimivva 3178 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
| 32 | 10, 31 | jca 511 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)))) |
| 33 | zringbas 21395 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 34 | zringplusg 21396 | . . 3 ⊢ + = (+g‘ℤring) | |
| 35 | 33, 4, 34, 11 | isghm 19129 | . 2 ⊢ (𝐹 ∈ (ℤring GrpHom 𝑅) ↔ ((ℤring ∈ Grp ∧ 𝑅 ∈ Grp) ∧ (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))))) |
| 36 | 3, 32, 35 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 + caddc 11047 ℤcz 12505 Basecbs 17155 +gcplusg 17196 Grpcgrp 18847 .gcmg 18981 GrpHom cghm 19126 ℤringczring 21388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-seq 13943 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-subrng 20466 df-subrg 20490 df-cnfld 21297 df-zring 21389 |
| This theorem is referenced by: mulgrhm 21419 frgpcyg 21515 gsummulgc2 33043 |
| Copyright terms: Public domain | W3C validator |