| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgghm2 | Structured version Visualization version GIF version | ||
| Description: The powers of a group element give a homomorphism from ℤ to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| mulgghm2.m | ⊢ · = (.g‘𝑅) |
| mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
| mulgghm2.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| mulgghm2 | ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝑅 ∈ Grp) | |
| 2 | zringgrp 21369 | . . 3 ⊢ ℤring ∈ Grp | |
| 3 | 1, 2 | jctil 519 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (ℤring ∈ Grp ∧ 𝑅 ∈ Grp)) |
| 4 | mulgghm2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | mulgghm2.m | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
| 6 | 4, 5 | mulgcl 19030 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
| 7 | 6 | 3expa 1118 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
| 8 | 7 | an32s 652 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 1 ) ∈ 𝐵) |
| 9 | mulgghm2.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 10 | 8, 9 | fmptd 7089 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹:ℤ⟶𝐵) |
| 11 | eqid 2730 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 12 | 4, 5, 11 | mulgdir 19045 | . . . . . . . 8 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ 𝐵)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 13 | 12 | 3exp2 1355 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (𝑥 ∈ ℤ → (𝑦 ∈ ℤ → ( 1 ∈ 𝐵 → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 )))))) |
| 14 | 13 | imp42 426 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 1 ∈ 𝐵) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 15 | 14 | an32s 652 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 16 | zaddcl 12580 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ) |
| 18 | oveq1 7397 | . . . . . . 7 ⊢ (𝑛 = (𝑥 + 𝑦) → (𝑛 · 1 ) = ((𝑥 + 𝑦) · 1 )) | |
| 19 | ovex 7423 | . . . . . . 7 ⊢ ((𝑥 + 𝑦) · 1 ) ∈ V | |
| 20 | 18, 9, 19 | fvmpt 6971 | . . . . . 6 ⊢ ((𝑥 + 𝑦) ∈ ℤ → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 )) |
| 21 | 17, 20 | syl 17 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 )) |
| 22 | oveq1 7397 | . . . . . . . 8 ⊢ (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 )) | |
| 23 | ovex 7423 | . . . . . . . 8 ⊢ (𝑥 · 1 ) ∈ V | |
| 24 | 22, 9, 23 | fvmpt 6971 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (𝐹‘𝑥) = (𝑥 · 1 )) |
| 25 | oveq1 7397 | . . . . . . . 8 ⊢ (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 )) | |
| 26 | ovex 7423 | . . . . . . . 8 ⊢ (𝑦 · 1 ) ∈ V | |
| 27 | 25, 9, 26 | fvmpt 6971 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → (𝐹‘𝑦) = (𝑦 · 1 )) |
| 28 | 24, 27 | oveqan12d 7409 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 29 | 28 | adantl 481 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 30 | 15, 21, 29 | 3eqtr4d 2775 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
| 31 | 30 | ralrimivva 3181 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
| 32 | 10, 31 | jca 511 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)))) |
| 33 | zringbas 21370 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 34 | zringplusg 21371 | . . 3 ⊢ + = (+g‘ℤring) | |
| 35 | 33, 4, 34, 11 | isghm 19154 | . 2 ⊢ (𝐹 ∈ (ℤring GrpHom 𝑅) ↔ ((ℤring ∈ Grp ∧ 𝑅 ∈ Grp) ∧ (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))))) |
| 36 | 3, 32, 35 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 + caddc 11078 ℤcz 12536 Basecbs 17186 +gcplusg 17227 Grpcgrp 18872 .gcmg 19006 GrpHom cghm 19151 ℤringczring 21363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-seq 13974 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-cnfld 21272 df-zring 21364 |
| This theorem is referenced by: mulgrhm 21394 frgpcyg 21490 gsummulgc2 33007 |
| Copyright terms: Public domain | W3C validator |