| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgghm2 | Structured version Visualization version GIF version | ||
| Description: The powers of a group element give a homomorphism from ℤ to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| mulgghm2.m | ⊢ · = (.g‘𝑅) |
| mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
| mulgghm2.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| mulgghm2 | ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝑅 ∈ Grp) | |
| 2 | zringgrp 21362 | . . 3 ⊢ ℤring ∈ Grp | |
| 3 | 1, 2 | jctil 519 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (ℤring ∈ Grp ∧ 𝑅 ∈ Grp)) |
| 4 | mulgghm2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | mulgghm2.m | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
| 6 | 4, 5 | mulgcl 19023 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
| 7 | 6 | 3expa 1118 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
| 8 | 7 | an32s 652 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 1 ) ∈ 𝐵) |
| 9 | mulgghm2.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 10 | 8, 9 | fmptd 7086 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹:ℤ⟶𝐵) |
| 11 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 12 | 4, 5, 11 | mulgdir 19038 | . . . . . . . 8 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ 𝐵)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 13 | 12 | 3exp2 1355 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (𝑥 ∈ ℤ → (𝑦 ∈ ℤ → ( 1 ∈ 𝐵 → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 )))))) |
| 14 | 13 | imp42 426 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 1 ∈ 𝐵) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 15 | 14 | an32s 652 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 16 | zaddcl 12573 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ) |
| 18 | oveq1 7394 | . . . . . . 7 ⊢ (𝑛 = (𝑥 + 𝑦) → (𝑛 · 1 ) = ((𝑥 + 𝑦) · 1 )) | |
| 19 | ovex 7420 | . . . . . . 7 ⊢ ((𝑥 + 𝑦) · 1 ) ∈ V | |
| 20 | 18, 9, 19 | fvmpt 6968 | . . . . . 6 ⊢ ((𝑥 + 𝑦) ∈ ℤ → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 )) |
| 21 | 17, 20 | syl 17 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 )) |
| 22 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 )) | |
| 23 | ovex 7420 | . . . . . . . 8 ⊢ (𝑥 · 1 ) ∈ V | |
| 24 | 22, 9, 23 | fvmpt 6968 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (𝐹‘𝑥) = (𝑥 · 1 )) |
| 25 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 )) | |
| 26 | ovex 7420 | . . . . . . . 8 ⊢ (𝑦 · 1 ) ∈ V | |
| 27 | 25, 9, 26 | fvmpt 6968 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → (𝐹‘𝑦) = (𝑦 · 1 )) |
| 28 | 24, 27 | oveqan12d 7406 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 29 | 28 | adantl 481 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
| 30 | 15, 21, 29 | 3eqtr4d 2774 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
| 31 | 30 | ralrimivva 3180 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
| 32 | 10, 31 | jca 511 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)))) |
| 33 | zringbas 21363 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 34 | zringplusg 21364 | . . 3 ⊢ + = (+g‘ℤring) | |
| 35 | 33, 4, 34, 11 | isghm 19147 | . 2 ⊢ (𝐹 ∈ (ℤring GrpHom 𝑅) ↔ ((ℤring ∈ Grp ∧ 𝑅 ∈ Grp) ∧ (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))))) |
| 36 | 3, 32, 35 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 + caddc 11071 ℤcz 12529 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 .gcmg 18999 GrpHom cghm 19144 ℤringczring 21356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-seq 13967 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-subrng 20455 df-subrg 20479 df-cnfld 21265 df-zring 21357 |
| This theorem is referenced by: mulgrhm 21387 frgpcyg 21483 gsummulgc2 33000 |
| Copyright terms: Public domain | W3C validator |