MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgghm2 Structured version   Visualization version   GIF version

Theorem mulgghm2 20761
Description: The powers of a group element give a homomorphism from to a group. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgghm2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mulgghm2 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
Distinct variable groups:   𝐵,𝑛   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgghm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝑅 ∈ Grp)
2 zringgrp 20738 . . 3 ring ∈ Grp
31, 2jctil 520 . 2 ((𝑅 ∈ Grp ∧ 1𝐵) → (ℤring ∈ Grp ∧ 𝑅 ∈ Grp))
4 mulgghm2.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 mulgghm2.m . . . . . . 7 · = (.g𝑅)
64, 5mulgcl 18780 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1𝐵) → (𝑛 · 1 ) ∈ 𝐵)
763expa 1117 . . . . 5 (((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 1𝐵) → (𝑛 · 1 ) ∈ 𝐵)
87an32s 649 . . . 4 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 1 ) ∈ 𝐵)
9 mulgghm2.f . . . 4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
108, 9fmptd 7020 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹:ℤ⟶𝐵)
11 eqid 2735 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
124, 5, 11mulgdir 18794 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1𝐵)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
13123exp2 1353 . . . . . . 7 (𝑅 ∈ Grp → (𝑥 ∈ ℤ → (𝑦 ∈ ℤ → ( 1𝐵 → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 ))))))
1413imp42 427 . . . . . 6 (((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 1𝐵) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
1514an32s 649 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
16 zaddcl 12420 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
1716adantl 482 . . . . . 6 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
18 oveq1 7315 . . . . . . 7 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 1 ) = ((𝑥 + 𝑦) · 1 ))
19 ovex 7341 . . . . . . 7 ((𝑥 + 𝑦) · 1 ) ∈ V
2018, 9, 19fvmpt 6907 . . . . . 6 ((𝑥 + 𝑦) ∈ ℤ → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 ))
2117, 20syl 17 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 ))
22 oveq1 7315 . . . . . . . 8 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
23 ovex 7341 . . . . . . . 8 (𝑥 · 1 ) ∈ V
2422, 9, 23fvmpt 6907 . . . . . . 7 (𝑥 ∈ ℤ → (𝐹𝑥) = (𝑥 · 1 ))
25 oveq1 7315 . . . . . . . 8 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
26 ovex 7341 . . . . . . . 8 (𝑦 · 1 ) ∈ V
2725, 9, 26fvmpt 6907 . . . . . . 7 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 1 ))
2824, 27oveqan12d 7327 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
2928adantl 482 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
3015, 21, 293eqtr4d 2785 . . . 4 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3130ralrimivva 3192 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3210, 31jca 512 . 2 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
33 zringbas 20739 . . 3 ℤ = (Base‘ℤring)
34 zringplusg 20740 . . 3 + = (+g‘ℤring)
3533, 4, 34, 11isghm 18893 . 2 (𝐹 ∈ (ℤring GrpHom 𝑅) ↔ ((ℤring ∈ Grp ∧ 𝑅 ∈ Grp) ∧ (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))))
363, 32, 35sylanbrc 583 1 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1538  wcel 2103  wral 3060  cmpt 5163  wf 6454  cfv 6458  (class class class)co 7308   + caddc 10934  cz 12379  Basecbs 16971  +gcplusg 17021  Grpcgrp 18636  .gcmg 18759   GrpHom cghm 18890  ringczring 20733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-10 2134  ax-11 2151  ax-12 2168  ax-ext 2706  ax-rep 5217  ax-sep 5231  ax-nul 5238  ax-pow 5296  ax-pr 5360  ax-un 7621  ax-cnex 10987  ax-resscn 10988  ax-1cn 10989  ax-icn 10990  ax-addcl 10991  ax-addrcl 10992  ax-mulcl 10993  ax-mulrcl 10994  ax-mulcom 10995  ax-addass 10996  ax-mulass 10997  ax-distr 10998  ax-i2m1 10999  ax-1ne0 11000  ax-1rid 11001  ax-rnegex 11002  ax-rrecex 11003  ax-cnre 11004  ax-pre-lttri 11005  ax-pre-lttrn 11006  ax-pre-ltadd 11007  ax-pre-mulgt0 11008  ax-addf 11010  ax-mulf 11011
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2727  df-clel 2813  df-nfc 2885  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3339  df-reu 3340  df-rab 3357  df-v 3438  df-sbc 3721  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4844  df-iun 4932  df-br 5081  df-opab 5143  df-mpt 5164  df-tr 5198  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7265  df-ov 7311  df-oprab 7312  df-mpo 7313  df-om 7749  df-1st 7867  df-2nd 7868  df-frecs 8132  df-wrecs 8163  df-recs 8237  df-rdg 8276  df-1o 8332  df-er 8534  df-en 8770  df-dom 8771  df-sdom 8772  df-fin 8773  df-pnf 11071  df-mnf 11072  df-xr 11073  df-ltxr 11074  df-le 11075  df-sub 11267  df-neg 11268  df-nn 12034  df-2 12096  df-3 12097  df-4 12098  df-5 12099  df-6 12100  df-7 12101  df-8 12102  df-9 12103  df-n0 12294  df-z 12380  df-dec 12498  df-uz 12643  df-fz 13300  df-seq 13782  df-struct 16907  df-sets 16924  df-slot 16942  df-ndx 16954  df-base 16972  df-ress 17001  df-plusg 17034  df-mulr 17035  df-starv 17036  df-tset 17040  df-ple 17041  df-ds 17043  df-unif 17044  df-0g 17211  df-mgm 18385  df-sgrp 18434  df-mnd 18445  df-grp 18639  df-minusg 18640  df-mulg 18760  df-subg 18811  df-ghm 18891  df-cmn 19447  df-mgp 19780  df-ur 19797  df-ring 19844  df-cring 19845  df-subrg 20085  df-cnfld 20661  df-zring 20734
This theorem is referenced by:  mulgrhm  20762  frgpcyg  20844
  Copyright terms: Public domain W3C validator