MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isposd Structured version   Visualization version   GIF version

Theorem isposd 18282
Description: Properties that determine a poset (implicit structure version). (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by AV, 26-Apr-2024.)
Hypotheses
Ref Expression
isposd.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
isposd.b (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
isposd.l (πœ‘ β†’ ≀ = (leβ€˜πΎ))
isposd.1 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ≀ π‘₯)
isposd.2 ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))
isposd.3 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))
Assertion
Ref Expression
isposd (πœ‘ β†’ 𝐾 ∈ Poset)
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐡   π‘₯,𝐾,𝑦,𝑧   πœ‘,π‘₯,𝑦,𝑧
Allowed substitution hints:   ≀ (π‘₯,𝑦,𝑧)   𝑉(π‘₯,𝑦,𝑧)

Proof of Theorem isposd
StepHypRef Expression
1 isposd.k . . . 4 (πœ‘ β†’ 𝐾 ∈ 𝑉)
21elexd 3493 . . 3 (πœ‘ β†’ 𝐾 ∈ V)
3 isposd.1 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ≀ π‘₯)
43adantrr 713 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ π‘₯ ≀ π‘₯)
54adantr 479 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑧 ∈ 𝐡) β†’ π‘₯ ≀ π‘₯)
6 isposd.2 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))
763expb 1118 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))
87adantr 479 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑧 ∈ 𝐡) β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))
9 isposd.3 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))
1093exp2 1352 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝐡 β†’ (𝑦 ∈ 𝐡 β†’ (𝑧 ∈ 𝐡 β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))))
1110imp42 425 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑧 ∈ 𝐡) β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))
125, 8, 113jca 1126 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑧 ∈ 𝐡) β†’ (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))
1312ralrimiva 3144 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))
1413ralrimivva 3198 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))
15 isposd.b . . . . 5 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
16 isposd.l . . . . . . . . 9 (πœ‘ β†’ ≀ = (leβ€˜πΎ))
1716breqd 5160 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ≀ π‘₯ ↔ π‘₯(leβ€˜πΎ)π‘₯))
1816breqd 5160 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ≀ 𝑦 ↔ π‘₯(leβ€˜πΎ)𝑦))
1916breqd 5160 . . . . . . . . . 10 (πœ‘ β†’ (𝑦 ≀ π‘₯ ↔ 𝑦(leβ€˜πΎ)π‘₯))
2018, 19anbi12d 629 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) ↔ (π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯)))
2120imbi1d 340 . . . . . . . 8 (πœ‘ β†’ (((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ↔ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦)))
2216breqd 5160 . . . . . . . . . 10 (πœ‘ β†’ (𝑦 ≀ 𝑧 ↔ 𝑦(leβ€˜πΎ)𝑧))
2318, 22anbi12d 629 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) ↔ (π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧)))
2416breqd 5160 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ≀ 𝑧 ↔ π‘₯(leβ€˜πΎ)𝑧))
2523, 24imbi12d 343 . . . . . . . 8 (πœ‘ β†’ (((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧) ↔ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧)))
2617, 21, 253anbi123d 1434 . . . . . . 7 (πœ‘ β†’ ((π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ (π‘₯(leβ€˜πΎ)π‘₯ ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧))))
2715, 26raleqbidv 3340 . . . . . 6 (πœ‘ β†’ (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘₯ ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧))))
2815, 27raleqbidv 3340 . . . . 5 (πœ‘ β†’ (βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ βˆ€π‘¦ ∈ (Baseβ€˜πΎ)βˆ€π‘§ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘₯ ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧))))
2915, 28raleqbidv 3340 . . . 4 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)βˆ€π‘§ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘₯ ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧))))
3029anbi2d 627 . . 3 (πœ‘ β†’ ((𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))) ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)βˆ€π‘§ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘₯ ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧)))))
312, 14, 30mpbi2and 708 . 2 (πœ‘ β†’ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)βˆ€π‘§ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘₯ ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧))))
32 eqid 2730 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
33 eqid 2730 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
3432, 33ispos 18273 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)βˆ€π‘§ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘₯ ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯(leβ€˜πΎ)𝑦 ∧ 𝑦(leβ€˜πΎ)𝑧) β†’ π‘₯(leβ€˜πΎ)𝑧))))
3531, 34sylibr 233 1 (πœ‘ β†’ 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  Vcvv 3472   class class class wbr 5149  β€˜cfv 6544  Basecbs 17150  lecple 17210  Posetcpo 18266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-poset 18272
This theorem is referenced by:  odupos  18287  pospo  18304  ipopos  18495  zntoslem  21333
  Copyright terms: Public domain W3C validator