Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxpconn Structured version   Visualization version   GIF version

Theorem cvxpconn 35227
Description: A convex subset of the complex numbers is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.) Avoid ax-mulf 11233. (Revised by GG, 19-Apr-2025.)
Hypotheses
Ref Expression
cvxpconn.1 (𝜑𝑆 ⊆ ℂ)
cvxpconn.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
cvxpconn.3 𝐽 = (TopOpen‘ℂfld)
cvxpconn.4 𝐾 = (𝐽t 𝑆)
Assertion
Ref Expression
cvxpconn (𝜑𝐾 ∈ PConn)
Distinct variable groups:   𝑡,𝐽   𝑥,𝑦,𝐾   𝑥,𝑡,𝑦,𝜑   𝑡,𝑆,𝑥
Allowed substitution hints:   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑡)

Proof of Theorem cvxpconn
Dummy variables 𝑢 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvxpconn.4 . . 3 𝐾 = (𝐽t 𝑆)
2 cvxpconn.3 . . . . 5 𝐽 = (TopOpen‘ℂfld)
32cnfldtop 24820 . . . 4 𝐽 ∈ Top
4 cvxpconn.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
5 cnex 11234 . . . . 5 ℂ ∈ V
6 ssexg 5329 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 586 . . . 4 (𝜑𝑆 ∈ V)
8 resttop 23184 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
93, 7, 8sylancr 587 . . 3 (𝜑 → (𝐽t 𝑆) ∈ Top)
101, 9eqeltrid 2843 . 2 (𝜑𝐾 ∈ Top)
112dfii3 24923 . . . . . . . 8 II = (𝐽t (0[,]1))
122cnfldtopon 24819 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝐽 ∈ (TopOn‘ℂ))
14 unitsscn 13537 . . . . . . . . 9 (0[,]1) ⊆ ℂ
1514a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0[,]1) ⊆ ℂ)
1612a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝐽 ∈ (TopOn‘ℂ))
1716cnmptid 23685 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (𝐽 Cn 𝐽))
184sselda 3995 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
1916, 16, 18cnmptc 23686 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑡 ∈ ℂ ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
202mpomulcn 24905 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2120a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
22 oveq12 7440 . . . . . . . . . . 11 ((𝑢 = 𝑡𝑣 = 𝑥) → (𝑢 · 𝑣) = (𝑡 · 𝑥))
2316, 17, 19, 16, 16, 21, 22cnmpt12 23691 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑡 ∈ ℂ ↦ (𝑡 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2423adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (𝑡 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2512a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (TopOn‘ℂ))
26 1cnd 11254 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
2725, 25, 26cnmptc 23686 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽))
282cncfcn1 24951 . . . . . . . . . . . . . 14 (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
2927, 28eleqtrrdi 2850 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
3025cnmptid 23685 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (𝐽 Cn 𝐽))
3130, 28eleqtrrdi 2850 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
3229, 31subcncf 25493 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (ℂ–cn→ℂ))
3332, 28eleqtrdi 2849 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (𝐽 Cn 𝐽))
3433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (𝐽 Cn 𝐽))
354adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑆 ⊆ ℂ)
36 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦𝑆)
3735, 36sseldd 3996 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦 ∈ ℂ)
3813, 13, 37cnmptc 23686 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3920a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
40 oveq12 7440 . . . . . . . . . 10 ((𝑢 = (1 − 𝑡) ∧ 𝑣 = 𝑦) → (𝑢 · 𝑣) = ((1 − 𝑡) · 𝑦))
4113, 34, 38, 13, 13, 39, 40cnmpt12 23691 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((1 − 𝑡) · 𝑦)) ∈ (𝐽 Cn 𝐽))
422addcn 24901 . . . . . . . . . 10 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4342a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4413, 24, 41, 43cnmpt12f 23690 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (𝐽 Cn 𝐽))
4511, 13, 15, 44cnmpt1res 23700 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽))
46 cvxpconn.2 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
47463exp2 1353 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 → (𝑦𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4847com23 86 . . . . . . . . . . 11 (𝜑 → (𝑦𝑆 → (𝑥𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4948imp42 426 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑥𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
5049fmpttd 7135 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))):(0[,]1)⟶𝑆)
5150frnd 6745 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆)
52 cnrest2 23310 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆𝑆 ⊆ ℂ) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
5312, 51, 35, 52mp3an2i 1465 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
5445, 53mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆)))
551oveq2i 7442 . . . . . 6 (II Cn 𝐾) = (II Cn (𝐽t 𝑆))
5654, 55eleqtrrdi 2850 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾))
57 0elunit 13506 . . . . . . 7 0 ∈ (0[,]1)
58 oveq1 7438 . . . . . . . . 9 (𝑡 = 0 → (𝑡 · 𝑥) = (0 · 𝑥))
59 oveq2 7439 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
60 1m0e1 12385 . . . . . . . . . . 11 (1 − 0) = 1
6159, 60eqtrdi 2791 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
6261oveq1d 7446 . . . . . . . . 9 (𝑡 = 0 → ((1 − 𝑡) · 𝑦) = (1 · 𝑦))
6358, 62oveq12d 7449 . . . . . . . 8 (𝑡 = 0 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((0 · 𝑥) + (1 · 𝑦)))
64 eqid 2735 . . . . . . . 8 (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
65 ovex 7464 . . . . . . . 8 ((0 · 𝑥) + (1 · 𝑦)) ∈ V
6663, 64, 65fvmpt 7016 . . . . . . 7 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦)))
6757, 66ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦))
6818adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥 ∈ ℂ)
6968mul02d 11457 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑥) = 0)
7037mullidd 11277 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑦) = 𝑦)
7169, 70oveq12d 7449 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = (0 + 𝑦))
7237addlidd 11460 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 + 𝑦) = 𝑦)
7371, 72eqtrd 2775 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = 𝑦)
7467, 73eqtrid 2787 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦)
75 1elunit 13507 . . . . . . 7 1 ∈ (0[,]1)
76 oveq1 7438 . . . . . . . . 9 (𝑡 = 1 → (𝑡 · 𝑥) = (1 · 𝑥))
77 oveq2 7439 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
78 1m1e0 12336 . . . . . . . . . . 11 (1 − 1) = 0
7977, 78eqtrdi 2791 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
8079oveq1d 7446 . . . . . . . . 9 (𝑡 = 1 → ((1 − 𝑡) · 𝑦) = (0 · 𝑦))
8176, 80oveq12d 7449 . . . . . . . 8 (𝑡 = 1 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((1 · 𝑥) + (0 · 𝑦)))
82 ovex 7464 . . . . . . . 8 ((1 · 𝑥) + (0 · 𝑦)) ∈ V
8381, 64, 82fvmpt 7016 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦)))
8475, 83ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦))
8568mullidd 11277 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑥) = 𝑥)
8637mul02d 11457 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑦) = 0)
8785, 86oveq12d 7449 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = (𝑥 + 0))
8868addridd 11459 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑥 + 0) = 𝑥)
8987, 88eqtrd 2775 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = 𝑥)
9084, 89eqtrid 2787 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)
91 fveq1 6906 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0))
9291eqeq1d 2737 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘0) = 𝑦 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦))
93 fveq1 6906 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1))
9493eqeq1d 2737 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘1) = 𝑥 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥))
9592, 94anbi12d 632 . . . . . 6 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)))
9695rspcev 3622 . . . . 5 (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾) ∧ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9756, 74, 90, 96syl12anc 837 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9897ralrimivva 3200 . . 3 (𝜑 → ∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
99 resttopon 23185 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
10012, 4, 99sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1011, 100eqeltrid 2843 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
102 toponuni 22936 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = 𝐾)
103101, 102syl 17 . . . 4 (𝜑𝑆 = 𝐾)
104103raleqdv 3324 . . . 4 (𝜑 → (∀𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
105103, 104raleqbidv 3344 . . 3 (𝜑 → (∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
10698, 105mpbid 232 . 2 (𝜑 → ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
107 eqid 2735 . . 3 𝐾 = 𝐾
108107ispconn 35208 . 2 (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
10910, 106, 108sylanbrc 583 1 (𝜑𝐾 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   cuni 4912  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  [,]cicc 13387  t crest 17467  TopOpenctopn 17468  fldccnfld 21382  Topctop 22915  TopOnctopon 22932   Cn ccn 23248   ×t ctx 23584  IIcii 24915  cnccncf 24916  PConncpconn 35204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-ii 24917  df-cncf 24918  df-pconn 35206
This theorem is referenced by:  cvxsconn  35228
  Copyright terms: Public domain W3C validator