Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxpconn Structured version   Visualization version   GIF version

Theorem cvxpconn 31766
Description: A convex subset of the complex numbers is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
cvxpconn.1 (𝜑𝑆 ⊆ ℂ)
cvxpconn.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
cvxpconn.3 𝐽 = (TopOpen‘ℂfld)
cvxpconn.4 𝐾 = (𝐽t 𝑆)
Assertion
Ref Expression
cvxpconn (𝜑𝐾 ∈ PConn)
Distinct variable groups:   𝑡,𝐽   𝑥,𝑡,𝑦,𝐾   𝜑,𝑡,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem cvxpconn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cvxpconn.4 . . 3 𝐾 = (𝐽t 𝑆)
2 cvxpconn.3 . . . . 5 𝐽 = (TopOpen‘ℂfld)
32cnfldtop 22964 . . . 4 𝐽 ∈ Top
4 cvxpconn.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
5 cnex 10340 . . . . 5 ℂ ∈ V
6 ssexg 5031 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 580 . . . 4 (𝜑𝑆 ∈ V)
8 resttop 21342 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
93, 7, 8sylancr 581 . . 3 (𝜑 → (𝐽t 𝑆) ∈ Top)
101, 9syl5eqel 2910 . 2 (𝜑𝐾 ∈ Top)
112dfii3 23063 . . . . . . . 8 II = (𝐽t (0[,]1))
122cnfldtopon 22963 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝐽 ∈ (TopOn‘ℂ))
14 unitssre 12619 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
15 ax-resscn 10316 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 3836 . . . . . . . . 9 (0[,]1) ⊆ ℂ
1716a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0[,]1) ⊆ ℂ)
1813cnmptid 21842 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (𝐽 Cn 𝐽))
194adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑆 ⊆ ℂ)
20 simprr 789 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥𝑆)
2119, 20sseldd 3828 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥 ∈ ℂ)
2213, 13, 21cnmptc 21843 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
232mulcn 23047 . . . . . . . . . . 11 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2423a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2513, 18, 22, 24cnmpt12f 21847 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (𝑡 · 𝑥)) ∈ (𝐽 Cn 𝐽))
26 1cnd 10358 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 1 ∈ ℂ)
2713, 13, 26cnmptc 21843 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽))
282subcn 23046 . . . . . . . . . . . 12 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2928a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3013, 27, 18, 29cnmpt12f 21847 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (𝐽 Cn 𝐽))
31 simprl 787 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦𝑆)
3219, 31sseldd 3828 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦 ∈ ℂ)
3313, 13, 32cnmptc 21843 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3413, 30, 33, 24cnmpt12f 21847 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((1 − 𝑡) · 𝑦)) ∈ (𝐽 Cn 𝐽))
352addcn 23045 . . . . . . . . . 10 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3635a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3713, 25, 34, 36cnmpt12f 21847 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (𝐽 Cn 𝐽))
3811, 13, 17, 37cnmpt1res 21857 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽))
39 cvxpconn.2 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
40393exp2 1467 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 → (𝑦𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4140com23 86 . . . . . . . . . . 11 (𝜑 → (𝑦𝑆 → (𝑥𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4241imp42 419 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑥𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
4342fmpttd 6639 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))):(0[,]1)⟶𝑆)
4443frnd 6289 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆)
45 cnrest2 21468 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆𝑆 ⊆ ℂ) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
4613, 44, 19, 45syl3anc 1494 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
4738, 46mpbid 224 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆)))
481oveq2i 6921 . . . . . 6 (II Cn 𝐾) = (II Cn (𝐽t 𝑆))
4947, 48syl6eleqr 2917 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾))
50 0elunit 12588 . . . . . . 7 0 ∈ (0[,]1)
51 oveq1 6917 . . . . . . . . 9 (𝑡 = 0 → (𝑡 · 𝑥) = (0 · 𝑥))
52 oveq2 6918 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
53 1m0e1 11486 . . . . . . . . . . 11 (1 − 0) = 1
5452, 53syl6eq 2877 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
5554oveq1d 6925 . . . . . . . . 9 (𝑡 = 0 → ((1 − 𝑡) · 𝑦) = (1 · 𝑦))
5651, 55oveq12d 6928 . . . . . . . 8 (𝑡 = 0 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((0 · 𝑥) + (1 · 𝑦)))
57 eqid 2825 . . . . . . . 8 (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
58 ovex 6942 . . . . . . . 8 ((0 · 𝑥) + (1 · 𝑦)) ∈ V
5956, 57, 58fvmpt 6533 . . . . . . 7 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦)))
6050, 59ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦))
6121mul02d 10560 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑥) = 0)
6232mulid2d 10382 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑦) = 𝑦)
6361, 62oveq12d 6928 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = (0 + 𝑦))
6432addid2d 10563 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 + 𝑦) = 𝑦)
6563, 64eqtrd 2861 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = 𝑦)
6660, 65syl5eq 2873 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦)
67 1elunit 12589 . . . . . . 7 1 ∈ (0[,]1)
68 oveq1 6917 . . . . . . . . 9 (𝑡 = 1 → (𝑡 · 𝑥) = (1 · 𝑥))
69 oveq2 6918 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
70 1m1e0 11430 . . . . . . . . . . 11 (1 − 1) = 0
7169, 70syl6eq 2877 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
7271oveq1d 6925 . . . . . . . . 9 (𝑡 = 1 → ((1 − 𝑡) · 𝑦) = (0 · 𝑦))
7368, 72oveq12d 6928 . . . . . . . 8 (𝑡 = 1 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((1 · 𝑥) + (0 · 𝑦)))
74 ovex 6942 . . . . . . . 8 ((1 · 𝑥) + (0 · 𝑦)) ∈ V
7573, 57, 74fvmpt 6533 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦)))
7667, 75ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦))
7721mulid2d 10382 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑥) = 𝑥)
7832mul02d 10560 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑦) = 0)
7977, 78oveq12d 6928 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = (𝑥 + 0))
8021addid1d 10562 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑥 + 0) = 𝑥)
8179, 80eqtrd 2861 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = 𝑥)
8276, 81syl5eq 2873 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)
83 fveq1 6436 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0))
8483eqeq1d 2827 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘0) = 𝑦 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦))
85 fveq1 6436 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1))
8685eqeq1d 2827 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘1) = 𝑥 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥))
8784, 86anbi12d 624 . . . . . 6 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)))
8887rspcev 3526 . . . . 5 (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾) ∧ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
8949, 66, 82, 88syl12anc 870 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9089ralrimivva 3180 . . 3 (𝜑 → ∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
91 resttopon 21343 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
9212, 4, 91sylancr 581 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
931, 92syl5eqel 2910 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
94 toponuni 21096 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = 𝐾)
9593, 94syl 17 . . . 4 (𝜑𝑆 = 𝐾)
9695raleqdv 3356 . . . 4 (𝜑 → (∀𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
9795, 96raleqbidv 3364 . . 3 (𝜑 → (∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
9890, 97mpbid 224 . 2 (𝜑 → ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
99 eqid 2825 . . 3 𝐾 = 𝐾
10099ispconn 31747 . 2 (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
10110, 98, 100sylanbrc 578 1 (𝜑𝐾 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  wrex 3118  Vcvv 3414  wss 3798   cuni 4660  cmpt 4954  ran crn 5347  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264  cmin 10592  [,]cicc 12473  t crest 16441  TopOpenctopn 16442  fldccnfld 20113  Topctop 21075  TopOnctopon 21092   Cn ccn 21406   ×t ctx 21741  IIcii 23055  PConncpconn 31743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-icc 12477  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cn 21409  df-cnp 21410  df-tx 21743  df-hmeo 21936  df-xms 22502  df-ms 22503  df-tms 22504  df-ii 23057  df-pconn 31745
This theorem is referenced by:  cvxsconn  31767
  Copyright terms: Public domain W3C validator