Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxpconn Structured version   Visualization version   GIF version

Theorem cvxpconn 35214
Description: A convex subset of the complex numbers is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.) Avoid ax-mulf 11108. (Revised by GG, 19-Apr-2025.)
Hypotheses
Ref Expression
cvxpconn.1 (𝜑𝑆 ⊆ ℂ)
cvxpconn.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
cvxpconn.3 𝐽 = (TopOpen‘ℂfld)
cvxpconn.4 𝐾 = (𝐽t 𝑆)
Assertion
Ref Expression
cvxpconn (𝜑𝐾 ∈ PConn)
Distinct variable groups:   𝑡,𝐽   𝑥,𝑦,𝐾   𝑥,𝑡,𝑦,𝜑   𝑡,𝑆,𝑥
Allowed substitution hints:   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑡)

Proof of Theorem cvxpconn
Dummy variables 𝑢 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvxpconn.4 . . 3 𝐾 = (𝐽t 𝑆)
2 cvxpconn.3 . . . . 5 𝐽 = (TopOpen‘ℂfld)
32cnfldtop 24687 . . . 4 𝐽 ∈ Top
4 cvxpconn.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
5 cnex 11109 . . . . 5 ℂ ∈ V
6 ssexg 5265 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 586 . . . 4 (𝜑𝑆 ∈ V)
8 resttop 23063 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
93, 7, 8sylancr 587 . . 3 (𝜑 → (𝐽t 𝑆) ∈ Top)
101, 9eqeltrid 2832 . 2 (𝜑𝐾 ∈ Top)
112dfii3 24792 . . . . . . . 8 II = (𝐽t (0[,]1))
122cnfldtopon 24686 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝐽 ∈ (TopOn‘ℂ))
14 unitsscn 13421 . . . . . . . . 9 (0[,]1) ⊆ ℂ
1514a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0[,]1) ⊆ ℂ)
1612a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝐽 ∈ (TopOn‘ℂ))
1716cnmptid 23564 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (𝐽 Cn 𝐽))
184sselda 3937 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
1916, 16, 18cnmptc 23565 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑡 ∈ ℂ ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
202mpomulcn 24774 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2120a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
22 oveq12 7362 . . . . . . . . . . 11 ((𝑢 = 𝑡𝑣 = 𝑥) → (𝑢 · 𝑣) = (𝑡 · 𝑥))
2316, 17, 19, 16, 16, 21, 22cnmpt12 23570 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑡 ∈ ℂ ↦ (𝑡 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2423adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (𝑡 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2512a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (TopOn‘ℂ))
26 1cnd 11129 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
2725, 25, 26cnmptc 23565 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽))
282cncfcn1 24820 . . . . . . . . . . . . . 14 (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
2927, 28eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
3025cnmptid 23564 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (𝐽 Cn 𝐽))
3130, 28eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
3229, 31subcncf 25361 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (ℂ–cn→ℂ))
3332, 28eleqtrdi 2838 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (𝐽 Cn 𝐽))
3433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (𝐽 Cn 𝐽))
354adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑆 ⊆ ℂ)
36 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦𝑆)
3735, 36sseldd 3938 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦 ∈ ℂ)
3813, 13, 37cnmptc 23565 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3920a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
40 oveq12 7362 . . . . . . . . . 10 ((𝑢 = (1 − 𝑡) ∧ 𝑣 = 𝑦) → (𝑢 · 𝑣) = ((1 − 𝑡) · 𝑦))
4113, 34, 38, 13, 13, 39, 40cnmpt12 23570 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((1 − 𝑡) · 𝑦)) ∈ (𝐽 Cn 𝐽))
422addcn 24770 . . . . . . . . . 10 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4342a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4413, 24, 41, 43cnmpt12f 23569 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (𝐽 Cn 𝐽))
4511, 13, 15, 44cnmpt1res 23579 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽))
46 cvxpconn.2 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
47463exp2 1355 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 → (𝑦𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4847com23 86 . . . . . . . . . . 11 (𝜑 → (𝑦𝑆 → (𝑥𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4948imp42 426 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑥𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
5049fmpttd 7053 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))):(0[,]1)⟶𝑆)
5150frnd 6664 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆)
52 cnrest2 23189 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆𝑆 ⊆ ℂ) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
5312, 51, 35, 52mp3an2i 1468 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
5445, 53mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆)))
551oveq2i 7364 . . . . . 6 (II Cn 𝐾) = (II Cn (𝐽t 𝑆))
5654, 55eleqtrrdi 2839 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾))
57 0elunit 13390 . . . . . . 7 0 ∈ (0[,]1)
58 oveq1 7360 . . . . . . . . 9 (𝑡 = 0 → (𝑡 · 𝑥) = (0 · 𝑥))
59 oveq2 7361 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
60 1m0e1 12262 . . . . . . . . . . 11 (1 − 0) = 1
6159, 60eqtrdi 2780 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
6261oveq1d 7368 . . . . . . . . 9 (𝑡 = 0 → ((1 − 𝑡) · 𝑦) = (1 · 𝑦))
6358, 62oveq12d 7371 . . . . . . . 8 (𝑡 = 0 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((0 · 𝑥) + (1 · 𝑦)))
64 eqid 2729 . . . . . . . 8 (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
65 ovex 7386 . . . . . . . 8 ((0 · 𝑥) + (1 · 𝑦)) ∈ V
6663, 64, 65fvmpt 6934 . . . . . . 7 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦)))
6757, 66ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦))
6818adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥 ∈ ℂ)
6968mul02d 11332 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑥) = 0)
7037mullidd 11152 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑦) = 𝑦)
7169, 70oveq12d 7371 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = (0 + 𝑦))
7237addlidd 11335 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 + 𝑦) = 𝑦)
7371, 72eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = 𝑦)
7467, 73eqtrid 2776 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦)
75 1elunit 13391 . . . . . . 7 1 ∈ (0[,]1)
76 oveq1 7360 . . . . . . . . 9 (𝑡 = 1 → (𝑡 · 𝑥) = (1 · 𝑥))
77 oveq2 7361 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
78 1m1e0 12218 . . . . . . . . . . 11 (1 − 1) = 0
7977, 78eqtrdi 2780 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
8079oveq1d 7368 . . . . . . . . 9 (𝑡 = 1 → ((1 − 𝑡) · 𝑦) = (0 · 𝑦))
8176, 80oveq12d 7371 . . . . . . . 8 (𝑡 = 1 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((1 · 𝑥) + (0 · 𝑦)))
82 ovex 7386 . . . . . . . 8 ((1 · 𝑥) + (0 · 𝑦)) ∈ V
8381, 64, 82fvmpt 6934 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦)))
8475, 83ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦))
8568mullidd 11152 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑥) = 𝑥)
8637mul02d 11332 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑦) = 0)
8785, 86oveq12d 7371 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = (𝑥 + 0))
8868addridd 11334 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑥 + 0) = 𝑥)
8987, 88eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = 𝑥)
9084, 89eqtrid 2776 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)
91 fveq1 6825 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0))
9291eqeq1d 2731 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘0) = 𝑦 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦))
93 fveq1 6825 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1))
9493eqeq1d 2731 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘1) = 𝑥 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥))
9592, 94anbi12d 632 . . . . . 6 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)))
9695rspcev 3579 . . . . 5 (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾) ∧ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9756, 74, 90, 96syl12anc 836 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9897ralrimivva 3172 . . 3 (𝜑 → ∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
99 resttopon 23064 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
10012, 4, 99sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1011, 100eqeltrid 2832 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
102 toponuni 22817 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = 𝐾)
103101, 102syl 17 . . . 4 (𝜑𝑆 = 𝐾)
104103raleqdv 3290 . . . 4 (𝜑 → (∀𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
105103, 104raleqbidv 3310 . . 3 (𝜑 → (∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
10698, 105mpbid 232 . 2 (𝜑 → ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
107 eqid 2729 . . 3 𝐾 = 𝐾
108107ispconn 35195 . 2 (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
10910, 106, 108sylanbrc 583 1 (𝜑𝐾 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905   cuni 4861  cmpt 5176  ran crn 5624  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  [,]cicc 13269  t crest 17342  TopOpenctopn 17343  fldccnfld 21279  Topctop 22796  TopOnctopon 22813   Cn ccn 23127   ×t ctx 23463  IIcii 24784  cnccncf 24785  PConncpconn 35191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-ii 24786  df-cncf 24787  df-pconn 35193
This theorem is referenced by:  cvxsconn  35215
  Copyright terms: Public domain W3C validator