Step | Hyp | Ref
| Expression |
1 | | 3anrot 1098 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
2 | | ordtval.1 |
. . . . . . . . . . . . . 14
⊢ 𝑋 = dom 𝑅 |
3 | 2 | tsrlemax 18219 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ TosetRel ∧ (𝑦 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎 ∨ 𝑦𝑅𝑏))) |
4 | 1, 3 | sylan2br 594 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎 ∨ 𝑦𝑅𝑏))) |
5 | 4 | 3exp2 1352 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → (𝑎 ∈ 𝑋 → (𝑏 ∈ 𝑋 → (𝑦 ∈ 𝑋 → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎 ∨ 𝑦𝑅𝑏)))))) |
6 | 5 | imp42 426 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎 ∨ 𝑦𝑅𝑏))) |
7 | 6 | notbid 317 |
. . . . . . . . 9
⊢ (((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) → (¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ ¬ (𝑦𝑅𝑎 ∨ 𝑦𝑅𝑏))) |
8 | | ioran 980 |
. . . . . . . . 9
⊢ (¬
(𝑦𝑅𝑎 ∨ 𝑦𝑅𝑏) ↔ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)) |
9 | 7, 8 | bitrdi 286 |
. . . . . . . 8
⊢ (((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) → (¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏))) |
10 | 9 | rabbidva 3402 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} = {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)}) |
11 | | ifcl 4501 |
. . . . . . . . 9
⊢ ((𝑏 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋) → if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋) |
12 | 11 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋) |
13 | | dmexg 7724 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ TosetRel → dom
𝑅 ∈
V) |
14 | 2, 13 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → 𝑋 ∈ V) |
15 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑋 ∈ V) |
16 | | rabexg 5250 |
. . . . . . . . . 10
⊢ (𝑋 ∈ V → {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ V) |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ V) |
18 | 10, 17 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V) |
19 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
20 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → (𝑦𝑅𝑥 ↔ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎))) |
21 | 20 | notbid 317 |
. . . . . . . . . . 11
⊢ (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎))) |
22 | 21 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)}) |
23 | 19, 22 | elrnmpt1s 5855 |
. . . . . . . . 9
⊢
((if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
24 | | ordtval.2 |
. . . . . . . . 9
⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
25 | 23, 24 | eleqtrrdi 2850 |
. . . . . . . 8
⊢
((if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ 𝐴) |
26 | 12, 18, 25 | syl2an2 682 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ 𝐴) |
27 | 10, 26 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴) |
28 | 27 | ralrimivva 3114 |
. . . . 5
⊢ (𝑅 ∈ TosetRel →
∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴) |
29 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝑋 ∈ V → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V) |
30 | 14, 29 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ TosetRel → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V) |
31 | 30 | ralrimivw 3108 |
. . . . . 6
⊢ (𝑅 ∈ TosetRel →
∀𝑎 ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V) |
32 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑎)) |
33 | 32 | notbid 317 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑎)) |
34 | 33 | rabbidv 3404 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎}) |
35 | 34 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑎 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎}) |
36 | | ineq1 4136 |
. . . . . . . . . 10
⊢ (𝑧 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} → (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) = ({𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏})) |
37 | | inrab 4237 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} |
38 | 36, 37 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑧 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} → (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) = {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)}) |
39 | 38 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑧 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} → ((𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)) |
40 | 39 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑧 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} → (∀𝑏 ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑏 ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)) |
41 | 35, 40 | ralrnmptw 6952 |
. . . . . 6
⊢
(∀𝑎 ∈
𝑋 {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V → (∀𝑧 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏 ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)) |
42 | 31, 41 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ TosetRel →
(∀𝑧 ∈ ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏 ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)) |
43 | 28, 42 | mpbird 256 |
. . . 4
⊢ (𝑅 ∈ TosetRel →
∀𝑧 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏 ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴) |
44 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝑋 ∈ V → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V) |
45 | 14, 44 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ TosetRel → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V) |
46 | 45 | ralrimivw 3108 |
. . . . . 6
⊢ (𝑅 ∈ TosetRel →
∀𝑏 ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V) |
47 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑏)) |
48 | 47 | notbid 317 |
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑏)) |
49 | 48 | rabbidv 3404 |
. . . . . . . 8
⊢ (𝑥 = 𝑏 → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) |
50 | 49 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) |
51 | | ineq2 4137 |
. . . . . . . 8
⊢ (𝑤 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏} → (𝑧 ∩ 𝑤) = (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏})) |
52 | 51 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑤 = {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏} → ((𝑧 ∩ 𝑤) ∈ 𝐴 ↔ (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴)) |
53 | 50, 52 | ralrnmptw 6952 |
. . . . . 6
⊢
(∀𝑏 ∈
𝑋 {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V → (∀𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧 ∩ 𝑤) ∈ 𝐴 ↔ ∀𝑏 ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴)) |
54 | 46, 53 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ TosetRel →
(∀𝑤 ∈ ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧 ∩ 𝑤) ∈ 𝐴 ↔ ∀𝑏 ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴)) |
55 | 54 | ralbidv 3120 |
. . . 4
⊢ (𝑅 ∈ TosetRel →
(∀𝑧 ∈ ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧 ∩ 𝑤) ∈ 𝐴 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏 ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴)) |
56 | 43, 55 | mpbird 256 |
. . 3
⊢ (𝑅 ∈ TosetRel →
∀𝑧 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧 ∩ 𝑤) ∈ 𝐴) |
57 | 24 | raleqi 3337 |
. . . 4
⊢
(∀𝑤 ∈
𝐴 (𝑧 ∩ 𝑤) ∈ 𝐴 ↔ ∀𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧 ∩ 𝑤) ∈ 𝐴) |
58 | 24, 57 | raleqbii 3160 |
. . 3
⊢
(∀𝑧 ∈
𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ∩ 𝑤) ∈ 𝐴 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧 ∩ 𝑤) ∈ 𝐴) |
59 | 56, 58 | sylibr 233 |
. 2
⊢ (𝑅 ∈ TosetRel →
∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ∩ 𝑤) ∈ 𝐴) |
60 | 14 | pwexd 5297 |
. . . 4
⊢ (𝑅 ∈ TosetRel →
𝒫 𝑋 ∈
V) |
61 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋 |
62 | 14 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ V) |
63 | | elpw2g 5263 |
. . . . . . . . 9
⊢ (𝑋 ∈ V → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋)) |
64 | 62, 63 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → ({𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋)) |
65 | 61, 64 | mpbiri 257 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋) |
66 | 65 | fmpttd 6971 |
. . . . . 6
⊢ (𝑅 ∈ TosetRel → (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}):𝑋⟶𝒫 𝑋) |
67 | 66 | frnd 6592 |
. . . . 5
⊢ (𝑅 ∈ TosetRel → ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ 𝒫 𝑋) |
68 | 24, 67 | eqsstrid 3965 |
. . . 4
⊢ (𝑅 ∈ TosetRel → 𝐴 ⊆ 𝒫 𝑋) |
69 | 60, 68 | ssexd 5243 |
. . 3
⊢ (𝑅 ∈ TosetRel → 𝐴 ∈ V) |
70 | | inficl 9114 |
. . 3
⊢ (𝐴 ∈ V → (∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ∩ 𝑤) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) |
71 | 69, 70 | syl 17 |
. 2
⊢ (𝑅 ∈ TosetRel →
(∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ∩ 𝑤) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) |
72 | 59, 71 | mpbid 231 |
1
⊢ (𝑅 ∈ TosetRel →
(fi‘𝐴) = 𝐴) |