MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbaslem Structured version   Visualization version   GIF version

Theorem ordtbaslem 22683
Description: Lemma for ordtbas 22687. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
Assertion
Ref Expression
ordtbaslem (𝑅 ∈ TosetRel β†’ (fiβ€˜π΄) = 𝐴)
Distinct variable groups:   π‘₯,𝑦,𝑅   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)

Proof of Theorem ordtbaslem
Dummy variables π‘Ž 𝑏 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 1100 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))
2 ordtval.1 . . . . . . . . . . . . . 14 𝑋 = dom 𝑅
32tsrlemax 18535 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑦 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
41, 3sylan2br 595 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
543exp2 1354 . . . . . . . . . . 11 (𝑅 ∈ TosetRel β†’ (π‘Ž ∈ 𝑋 β†’ (𝑏 ∈ 𝑋 β†’ (𝑦 ∈ 𝑋 β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏))))))
65imp42 427 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
76notbid 317 . . . . . . . . 9 (((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) β†’ (Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ Β¬ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
8 ioran 982 . . . . . . . . 9 (Β¬ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏) ↔ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏))
97, 8bitrdi 286 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) β†’ (Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)))
109rabbidva 3439 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} = {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)})
11 ifcl 4572 . . . . . . . . 9 ((𝑏 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋) β†’ if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋)
1211ancoms 459 . . . . . . . 8 ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) β†’ if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋)
13 dmexg 7890 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel β†’ dom 𝑅 ∈ V)
142, 13eqeltrid 2837 . . . . . . . . . . 11 (𝑅 ∈ TosetRel β†’ 𝑋 ∈ V)
1514adantr 481 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ 𝑋 ∈ V)
16 rabexg 5330 . . . . . . . . . 10 (𝑋 ∈ V β†’ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ V)
1715, 16syl 17 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ V)
1810, 17eqeltrd 2833 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ V)
19 eqid 2732 . . . . . . . . . 10 (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
20 breq2 5151 . . . . . . . . . . . 12 (π‘₯ = if(π‘Žπ‘…π‘, 𝑏, π‘Ž) β†’ (𝑦𝑅π‘₯ ↔ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)))
2120notbid 317 . . . . . . . . . . 11 (π‘₯ = if(π‘Žπ‘…π‘, 𝑏, π‘Ž) β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)))
2221rabbidv 3440 . . . . . . . . . 10 (π‘₯ = if(π‘Žπ‘…π‘, 𝑏, π‘Ž) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)})
2319, 22elrnmpt1s 5954 . . . . . . . . 9 ((if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ V) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
24 ordtval.2 . . . . . . . . 9 𝐴 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
2523, 24eleqtrrdi 2844 . . . . . . . 8 ((if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ V) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ 𝐴)
2612, 18, 25syl2an2 684 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ 𝐴)
2710, 26eqeltrrd 2834 . . . . . 6 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴)
2827ralrimivva 3200 . . . . 5 (𝑅 ∈ TosetRel β†’ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴)
29 rabexg 5330 . . . . . . . 8 (𝑋 ∈ V β†’ {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V)
3014, 29syl 17 . . . . . . 7 (𝑅 ∈ TosetRel β†’ {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V)
3130ralrimivw 3150 . . . . . 6 (𝑅 ∈ TosetRel β†’ βˆ€π‘Ž ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V)
32 breq2 5151 . . . . . . . . . 10 (π‘₯ = π‘Ž β†’ (𝑦𝑅π‘₯ ↔ π‘¦π‘…π‘Ž))
3332notbid 317 . . . . . . . . 9 (π‘₯ = π‘Ž β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ π‘¦π‘…π‘Ž))
3433rabbidv 3440 . . . . . . . 8 (π‘₯ = π‘Ž β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž})
3534cbvmptv 5260 . . . . . . 7 (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (π‘Ž ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž})
36 ineq1 4204 . . . . . . . . . 10 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) = ({𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}))
37 inrab 4305 . . . . . . . . . 10 ({𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) = {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)}
3836, 37eqtrdi 2788 . . . . . . . . 9 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) = {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)})
3938eleq1d 2818 . . . . . . . 8 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ ((𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4039ralbidv 3177 . . . . . . 7 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ (βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4135, 40ralrnmptw 7092 . . . . . 6 (βˆ€π‘Ž ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V β†’ (βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4231, 41syl 17 . . . . 5 (𝑅 ∈ TosetRel β†’ (βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4328, 42mpbird 256 . . . 4 (𝑅 ∈ TosetRel β†’ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴)
44 rabexg 5330 . . . . . . . 8 (𝑋 ∈ V β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V)
4514, 44syl 17 . . . . . . 7 (𝑅 ∈ TosetRel β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V)
4645ralrimivw 3150 . . . . . 6 (𝑅 ∈ TosetRel β†’ βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V)
47 breq2 5151 . . . . . . . . . 10 (π‘₯ = 𝑏 β†’ (𝑦𝑅π‘₯ ↔ 𝑦𝑅𝑏))
4847notbid 317 . . . . . . . . 9 (π‘₯ = 𝑏 β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ 𝑦𝑅𝑏))
4948rabbidv 3440 . . . . . . . 8 (π‘₯ = 𝑏 β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏})
5049cbvmptv 5260 . . . . . . 7 (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏})
51 ineq2 4205 . . . . . . . 8 (𝑀 = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} β†’ (𝑧 ∩ 𝑀) = (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}))
5251eleq1d 2818 . . . . . . 7 (𝑀 = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} β†’ ((𝑧 ∩ 𝑀) ∈ 𝐴 ↔ (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5350, 52ralrnmptw 7092 . . . . . 6 (βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V β†’ (βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5446, 53syl 17 . . . . 5 (𝑅 ∈ TosetRel β†’ (βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5554ralbidv 3177 . . . 4 (𝑅 ∈ TosetRel β†’ (βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5643, 55mpbird 256 . . 3 (𝑅 ∈ TosetRel β†’ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴)
5724raleqi 3323 . . . 4 (βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴)
5824, 57raleqbii 3338 . . 3 (βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴)
5956, 58sylibr 233 . 2 (𝑅 ∈ TosetRel β†’ βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴)
6014pwexd 5376 . . . 4 (𝑅 ∈ TosetRel β†’ 𝒫 𝑋 ∈ V)
61 ssrab2 4076 . . . . . . . 8 {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} βŠ† 𝑋
6214adantr 481 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ π‘₯ ∈ 𝑋) β†’ 𝑋 ∈ V)
63 elpw2g 5343 . . . . . . . . 9 (𝑋 ∈ V β†’ ({𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} βŠ† 𝑋))
6462, 63syl 17 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ π‘₯ ∈ 𝑋) β†’ ({𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} βŠ† 𝑋))
6561, 64mpbiri 257 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ π‘₯ ∈ 𝑋) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} ∈ 𝒫 𝑋)
6665fmpttd 7111 . . . . . 6 (𝑅 ∈ TosetRel β†’ (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}):π‘‹βŸΆπ’« 𝑋)
6766frnd 6722 . . . . 5 (𝑅 ∈ TosetRel β†’ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βŠ† 𝒫 𝑋)
6824, 67eqsstrid 4029 . . . 4 (𝑅 ∈ TosetRel β†’ 𝐴 βŠ† 𝒫 𝑋)
6960, 68ssexd 5323 . . 3 (𝑅 ∈ TosetRel β†’ 𝐴 ∈ V)
70 inficl 9416 . . 3 (𝐴 ∈ V β†’ (βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ (fiβ€˜π΄) = 𝐴))
7169, 70syl 17 . 2 (𝑅 ∈ TosetRel β†’ (βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ (fiβ€˜π΄) = 𝐴))
7259, 71mpbid 231 1 (𝑅 ∈ TosetRel β†’ (fiβ€˜π΄) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  ifcif 4527  π’« cpw 4601   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  ran crn 5676  β€˜cfv 6540  ficfi 9401   TosetRel ctsr 18514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-er 8699  df-en 8936  df-fin 8939  df-fi 9402  df-ps 18515  df-tsr 18516
This theorem is referenced by:  ordtbas2  22686
  Copyright terms: Public domain W3C validator