MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbaslem Structured version   Visualization version   GIF version

Theorem ordtbaslem 23082
Description: Lemma for ordtbas 23086. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
Assertion
Ref Expression
ordtbaslem (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem ordtbaslem
Dummy variables 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 1099 . . . . . . . . . . . . 13 ((𝑦𝑋𝑎𝑋𝑏𝑋) ↔ (𝑎𝑋𝑏𝑋𝑦𝑋))
2 ordtval.1 . . . . . . . . . . . . . 14 𝑋 = dom 𝑅
32tsrlemax 18552 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑦𝑋𝑎𝑋𝑏𝑋)) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏)))
41, 3sylan2br 595 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋𝑦𝑋)) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏)))
543exp2 1355 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → (𝑎𝑋 → (𝑏𝑋 → (𝑦𝑋 → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏))))))
65imp42 426 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑦𝑋) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏)))
76notbid 318 . . . . . . . . 9 (((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑦𝑋) → (¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ ¬ (𝑦𝑅𝑎𝑦𝑅𝑏)))
8 ioran 985 . . . . . . . . 9 (¬ (𝑦𝑅𝑎𝑦𝑅𝑏) ↔ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏))
97, 8bitrdi 287 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑦𝑋) → (¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)))
109rabbidva 3415 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)})
11 ifcl 4537 . . . . . . . . 9 ((𝑏𝑋𝑎𝑋) → if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋)
1211ancoms 458 . . . . . . . 8 ((𝑎𝑋𝑏𝑋) → if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋)
13 dmexg 7880 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
142, 13eqeltrid 2833 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
1514adantr 480 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑋 ∈ V)
16 rabexg 5295 . . . . . . . . . 10 (𝑋 ∈ V → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ V)
1715, 16syl 17 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ V)
1810, 17eqeltrd 2829 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V)
19 eqid 2730 . . . . . . . . . 10 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
20 breq2 5114 . . . . . . . . . . . 12 (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → (𝑦𝑅𝑥𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)))
2120notbid 318 . . . . . . . . . . 11 (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)))
2221rabbidv 3416 . . . . . . . . . 10 (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)})
2319, 22elrnmpt1s 5926 . . . . . . . . 9 ((if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
24 ordtval.2 . . . . . . . . 9 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
2523, 24eleqtrrdi 2840 . . . . . . . 8 ((if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ 𝐴)
2612, 18, 25syl2an2 686 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ 𝐴)
2710, 26eqeltrrd 2830 . . . . . 6 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)
2827ralrimivva 3181 . . . . 5 (𝑅 ∈ TosetRel → ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)
29 rabexg 5295 . . . . . . . 8 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
3014, 29syl 17 . . . . . . 7 (𝑅 ∈ TosetRel → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
3130ralrimivw 3130 . . . . . 6 (𝑅 ∈ TosetRel → ∀𝑎𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
32 breq2 5114 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑦𝑅𝑥𝑦𝑅𝑎))
3332notbid 318 . . . . . . . . 9 (𝑥 = 𝑎 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑎))
3433rabbidv 3416 . . . . . . . 8 (𝑥 = 𝑎 → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
3534cbvmptv 5214 . . . . . . 7 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑎𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
36 ineq1 4179 . . . . . . . . . 10 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) = ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}))
37 inrab 4282 . . . . . . . . . 10 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)}
3836, 37eqtrdi 2781 . . . . . . . . 9 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)})
3938eleq1d 2814 . . . . . . . 8 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → ((𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4039ralbidv 3157 . . . . . . 7 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → (∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4135, 40ralrnmptw 7069 . . . . . 6 (∀𝑎𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V → (∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4231, 41syl 17 . . . . 5 (𝑅 ∈ TosetRel → (∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4328, 42mpbird 257 . . . 4 (𝑅 ∈ TosetRel → ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴)
44 rabexg 5295 . . . . . . . 8 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V)
4514, 44syl 17 . . . . . . 7 (𝑅 ∈ TosetRel → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V)
4645ralrimivw 3130 . . . . . 6 (𝑅 ∈ TosetRel → ∀𝑏𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V)
47 breq2 5114 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝑦𝑅𝑥𝑦𝑅𝑏))
4847notbid 318 . . . . . . . . 9 (𝑥 = 𝑏 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑏))
4948rabbidv 3416 . . . . . . . 8 (𝑥 = 𝑏 → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏})
5049cbvmptv 5214 . . . . . . 7 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑏𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏})
51 ineq2 4180 . . . . . . . 8 (𝑤 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} → (𝑧𝑤) = (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}))
5251eleq1d 2814 . . . . . . 7 (𝑤 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} → ((𝑧𝑤) ∈ 𝐴 ↔ (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5350, 52ralrnmptw 7069 . . . . . 6 (∀𝑏𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V → (∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴 ↔ ∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5446, 53syl 17 . . . . 5 (𝑅 ∈ TosetRel → (∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴 ↔ ∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5554ralbidv 3157 . . . 4 (𝑅 ∈ TosetRel → (∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴 ↔ ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5643, 55mpbird 257 . . 3 (𝑅 ∈ TosetRel → ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴)
5724raleqi 3299 . . . 4 (∀𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ ∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴)
5824, 57raleqbii 3319 . . 3 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴)
5956, 58sylibr 234 . 2 (𝑅 ∈ TosetRel → ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
6014pwexd 5337 . . . 4 (𝑅 ∈ TosetRel → 𝒫 𝑋 ∈ V)
61 ssrab2 4046 . . . . . . . 8 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋
6214adantr 480 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → 𝑋 ∈ V)
63 elpw2g 5291 . . . . . . . . 9 (𝑋 ∈ V → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
6462, 63syl 17 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
6561, 64mpbiri 258 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋)
6665fmpttd 7090 . . . . . 6 (𝑅 ∈ TosetRel → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}):𝑋⟶𝒫 𝑋)
6766frnd 6699 . . . . 5 (𝑅 ∈ TosetRel → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ 𝒫 𝑋)
6824, 67eqsstrid 3988 . . . 4 (𝑅 ∈ TosetRel → 𝐴 ⊆ 𝒫 𝑋)
6960, 68ssexd 5282 . . 3 (𝑅 ∈ TosetRel → 𝐴 ∈ V)
70 inficl 9383 . . 3 (𝐴 ∈ V → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
7169, 70syl 17 . 2 (𝑅 ∈ TosetRel → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
7259, 71mpbid 232 1 (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cin 3916  wss 3917  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cfv 6514  ficfi 9368   TosetRel ctsr 18531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-fin 8925  df-fi 9369  df-ps 18532  df-tsr 18533
This theorem is referenced by:  ordtbas2  23085
  Copyright terms: Public domain W3C validator