MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbaslem Structured version   Visualization version   GIF version

Theorem ordtbaslem 22539
Description: Lemma for ordtbas 22543. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
Assertion
Ref Expression
ordtbaslem (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem ordtbaslem
Dummy variables 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 1100 . . . . . . . . . . . . 13 ((𝑦𝑋𝑎𝑋𝑏𝑋) ↔ (𝑎𝑋𝑏𝑋𝑦𝑋))
2 ordtval.1 . . . . . . . . . . . . . 14 𝑋 = dom 𝑅
32tsrlemax 18475 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑦𝑋𝑎𝑋𝑏𝑋)) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏)))
41, 3sylan2br 595 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋𝑦𝑋)) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏)))
543exp2 1354 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → (𝑎𝑋 → (𝑏𝑋 → (𝑦𝑋 → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏))))))
65imp42 427 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑦𝑋) → (𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (𝑦𝑅𝑎𝑦𝑅𝑏)))
76notbid 317 . . . . . . . . 9 (((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑦𝑋) → (¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ ¬ (𝑦𝑅𝑎𝑦𝑅𝑏)))
8 ioran 982 . . . . . . . . 9 (¬ (𝑦𝑅𝑎𝑦𝑅𝑏) ↔ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏))
97, 8bitrdi 286 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑦𝑋) → (¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎) ↔ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)))
109rabbidva 3414 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)})
11 ifcl 4531 . . . . . . . . 9 ((𝑏𝑋𝑎𝑋) → if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋)
1211ancoms 459 . . . . . . . 8 ((𝑎𝑋𝑏𝑋) → if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋)
13 dmexg 7840 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
142, 13eqeltrid 2842 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
1514adantr 481 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑋 ∈ V)
16 rabexg 5288 . . . . . . . . . 10 (𝑋 ∈ V → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ V)
1715, 16syl 17 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ V)
1810, 17eqeltrd 2838 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V)
19 eqid 2736 . . . . . . . . . 10 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
20 breq2 5109 . . . . . . . . . . . 12 (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → (𝑦𝑅𝑥𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)))
2120notbid 317 . . . . . . . . . . 11 (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)))
2221rabbidv 3415 . . . . . . . . . 10 (𝑥 = if(𝑎𝑅𝑏, 𝑏, 𝑎) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)})
2319, 22elrnmpt1s 5912 . . . . . . . . 9 ((if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
24 ordtval.2 . . . . . . . . 9 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
2523, 24eleqtrrdi 2849 . . . . . . . 8 ((if(𝑎𝑅𝑏, 𝑏, 𝑎) ∈ 𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ V) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ 𝐴)
2612, 18, 25syl2an2 684 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅if(𝑎𝑅𝑏, 𝑏, 𝑎)} ∈ 𝐴)
2710, 26eqeltrrd 2839 . . . . . 6 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)
2827ralrimivva 3197 . . . . 5 (𝑅 ∈ TosetRel → ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴)
29 rabexg 5288 . . . . . . . 8 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
3014, 29syl 17 . . . . . . 7 (𝑅 ∈ TosetRel → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
3130ralrimivw 3147 . . . . . 6 (𝑅 ∈ TosetRel → ∀𝑎𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
32 breq2 5109 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑦𝑅𝑥𝑦𝑅𝑎))
3332notbid 317 . . . . . . . . 9 (𝑥 = 𝑎 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑎))
3433rabbidv 3415 . . . . . . . 8 (𝑥 = 𝑎 → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
3534cbvmptv 5218 . . . . . . 7 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑎𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
36 ineq1 4165 . . . . . . . . . 10 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) = ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}))
37 inrab 4266 . . . . . . . . . 10 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)}
3836, 37eqtrdi 2792 . . . . . . . . 9 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)})
3938eleq1d 2822 . . . . . . . 8 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → ((𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4039ralbidv 3174 . . . . . . 7 (𝑧 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} → (∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4135, 40ralrnmptw 7044 . . . . . 6 (∀𝑎𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V → (∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4231, 41syl 17 . . . . 5 (𝑅 ∈ TosetRel → (∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4328, 42mpbird 256 . . . 4 (𝑅 ∈ TosetRel → ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴)
44 rabexg 5288 . . . . . . . 8 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V)
4514, 44syl 17 . . . . . . 7 (𝑅 ∈ TosetRel → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V)
4645ralrimivw 3147 . . . . . 6 (𝑅 ∈ TosetRel → ∀𝑏𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V)
47 breq2 5109 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝑦𝑅𝑥𝑦𝑅𝑏))
4847notbid 317 . . . . . . . . 9 (𝑥 = 𝑏 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑏))
4948rabbidv 3415 . . . . . . . 8 (𝑥 = 𝑏 → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏})
5049cbvmptv 5218 . . . . . . 7 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑏𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏})
51 ineq2 4166 . . . . . . . 8 (𝑤 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} → (𝑧𝑤) = (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}))
5251eleq1d 2822 . . . . . . 7 (𝑤 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} → ((𝑧𝑤) ∈ 𝐴 ↔ (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5350, 52ralrnmptw 7044 . . . . . 6 (∀𝑏𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏} ∈ V → (∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴 ↔ ∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5446, 53syl 17 . . . . 5 (𝑅 ∈ TosetRel → (∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴 ↔ ∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5554ralbidv 3174 . . . 4 (𝑅 ∈ TosetRel → (∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴 ↔ ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑏𝑋 (𝑧 ∩ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5643, 55mpbird 256 . . 3 (𝑅 ∈ TosetRel → ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴)
5724raleqi 3311 . . . 4 (∀𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ ∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴)
5824, 57raleqbii 3315 . . 3 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ ∀𝑧 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})∀𝑤 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})(𝑧𝑤) ∈ 𝐴)
5956, 58sylibr 233 . 2 (𝑅 ∈ TosetRel → ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
6014pwexd 5334 . . . 4 (𝑅 ∈ TosetRel → 𝒫 𝑋 ∈ V)
61 ssrab2 4037 . . . . . . . 8 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋
6214adantr 481 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → 𝑋 ∈ V)
63 elpw2g 5301 . . . . . . . . 9 (𝑋 ∈ V → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
6462, 63syl 17 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
6561, 64mpbiri 257 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋)
6665fmpttd 7063 . . . . . 6 (𝑅 ∈ TosetRel → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}):𝑋⟶𝒫 𝑋)
6766frnd 6676 . . . . 5 (𝑅 ∈ TosetRel → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ 𝒫 𝑋)
6824, 67eqsstrid 3992 . . . 4 (𝑅 ∈ TosetRel → 𝐴 ⊆ 𝒫 𝑋)
6960, 68ssexd 5281 . . 3 (𝑅 ∈ TosetRel → 𝐴 ∈ V)
70 inficl 9361 . . 3 (𝐴 ∈ V → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
7169, 70syl 17 . 2 (𝑅 ∈ TosetRel → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
7259, 71mpbid 231 1 (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  cin 3909  wss 3910  ifcif 4486  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cfv 6496  ficfi 9346   TosetRel ctsr 18454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-er 8648  df-en 8884  df-fin 8887  df-fi 9347  df-ps 18455  df-tsr 18456
This theorem is referenced by:  ordtbas2  22542
  Copyright terms: Public domain W3C validator