MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbaslem Structured version   Visualization version   GIF version

Theorem ordtbaslem 22692
Description: Lemma for ordtbas 22696. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
Assertion
Ref Expression
ordtbaslem (𝑅 ∈ TosetRel β†’ (fiβ€˜π΄) = 𝐴)
Distinct variable groups:   π‘₯,𝑦,𝑅   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)

Proof of Theorem ordtbaslem
Dummy variables π‘Ž 𝑏 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 1101 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))
2 ordtval.1 . . . . . . . . . . . . . 14 𝑋 = dom 𝑅
32tsrlemax 18539 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑦 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
41, 3sylan2br 596 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
543exp2 1355 . . . . . . . . . . 11 (𝑅 ∈ TosetRel β†’ (π‘Ž ∈ 𝑋 β†’ (𝑏 ∈ 𝑋 β†’ (𝑦 ∈ 𝑋 β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏))))))
65imp42 428 . . . . . . . . . 10 (((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) β†’ (𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
76notbid 318 . . . . . . . . 9 (((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) β†’ (Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ Β¬ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏)))
8 ioran 983 . . . . . . . . 9 (Β¬ (π‘¦π‘…π‘Ž ∨ 𝑦𝑅𝑏) ↔ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏))
97, 8bitrdi 287 . . . . . . . 8 (((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) β†’ (Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ↔ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)))
109rabbidva 3440 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} = {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)})
11 ifcl 4574 . . . . . . . . 9 ((𝑏 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋) β†’ if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋)
1211ancoms 460 . . . . . . . 8 ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) β†’ if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋)
13 dmexg 7894 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel β†’ dom 𝑅 ∈ V)
142, 13eqeltrid 2838 . . . . . . . . . . 11 (𝑅 ∈ TosetRel β†’ 𝑋 ∈ V)
1514adantr 482 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ 𝑋 ∈ V)
16 rabexg 5332 . . . . . . . . . 10 (𝑋 ∈ V β†’ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ V)
1715, 16syl 17 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ V)
1810, 17eqeltrd 2834 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ V)
19 eqid 2733 . . . . . . . . . 10 (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
20 breq2 5153 . . . . . . . . . . . 12 (π‘₯ = if(π‘Žπ‘…π‘, 𝑏, π‘Ž) β†’ (𝑦𝑅π‘₯ ↔ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)))
2120notbid 318 . . . . . . . . . . 11 (π‘₯ = if(π‘Žπ‘…π‘, 𝑏, π‘Ž) β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)))
2221rabbidv 3441 . . . . . . . . . 10 (π‘₯ = if(π‘Žπ‘…π‘, 𝑏, π‘Ž) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)})
2319, 22elrnmpt1s 5957 . . . . . . . . 9 ((if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ V) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
24 ordtval.2 . . . . . . . . 9 𝐴 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
2523, 24eleqtrrdi 2845 . . . . . . . 8 ((if(π‘Žπ‘…π‘, 𝑏, π‘Ž) ∈ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ V) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ 𝐴)
2612, 18, 25syl2an2 685 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅if(π‘Žπ‘…π‘, 𝑏, π‘Ž)} ∈ 𝐴)
2710, 26eqeltrrd 2835 . . . . . 6 ((𝑅 ∈ TosetRel ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴)
2827ralrimivva 3201 . . . . 5 (𝑅 ∈ TosetRel β†’ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴)
29 rabexg 5332 . . . . . . . 8 (𝑋 ∈ V β†’ {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V)
3014, 29syl 17 . . . . . . 7 (𝑅 ∈ TosetRel β†’ {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V)
3130ralrimivw 3151 . . . . . 6 (𝑅 ∈ TosetRel β†’ βˆ€π‘Ž ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V)
32 breq2 5153 . . . . . . . . . 10 (π‘₯ = π‘Ž β†’ (𝑦𝑅π‘₯ ↔ π‘¦π‘…π‘Ž))
3332notbid 318 . . . . . . . . 9 (π‘₯ = π‘Ž β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ π‘¦π‘…π‘Ž))
3433rabbidv 3441 . . . . . . . 8 (π‘₯ = π‘Ž β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž})
3534cbvmptv 5262 . . . . . . 7 (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (π‘Ž ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž})
36 ineq1 4206 . . . . . . . . . 10 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) = ({𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}))
37 inrab 4307 . . . . . . . . . 10 ({𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) = {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)}
3836, 37eqtrdi 2789 . . . . . . . . 9 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) = {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)})
3938eleq1d 2819 . . . . . . . 8 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ ((𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4039ralbidv 3178 . . . . . . 7 (𝑧 = {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} β†’ (βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4135, 40ralrnmptw 7096 . . . . . 6 (βˆ€π‘Ž ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ π‘¦π‘…π‘Ž} ∈ V β†’ (βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4231, 41syl 17 . . . . 5 (𝑅 ∈ TosetRel β†’ (βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴 ↔ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ (Β¬ π‘¦π‘…π‘Ž ∧ Β¬ 𝑦𝑅𝑏)} ∈ 𝐴))
4328, 42mpbird 257 . . . 4 (𝑅 ∈ TosetRel β†’ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴)
44 rabexg 5332 . . . . . . . 8 (𝑋 ∈ V β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V)
4514, 44syl 17 . . . . . . 7 (𝑅 ∈ TosetRel β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V)
4645ralrimivw 3151 . . . . . 6 (𝑅 ∈ TosetRel β†’ βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V)
47 breq2 5153 . . . . . . . . . 10 (π‘₯ = 𝑏 β†’ (𝑦𝑅π‘₯ ↔ 𝑦𝑅𝑏))
4847notbid 318 . . . . . . . . 9 (π‘₯ = 𝑏 β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ 𝑦𝑅𝑏))
4948rabbidv 3441 . . . . . . . 8 (π‘₯ = 𝑏 β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏})
5049cbvmptv 5262 . . . . . . 7 (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏})
51 ineq2 4207 . . . . . . . 8 (𝑀 = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} β†’ (𝑧 ∩ 𝑀) = (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}))
5251eleq1d 2819 . . . . . . 7 (𝑀 = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} β†’ ((𝑧 ∩ 𝑀) ∈ 𝐴 ↔ (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5350, 52ralrnmptw 7096 . . . . . 6 (βˆ€π‘ ∈ 𝑋 {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏} ∈ V β†’ (βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5446, 53syl 17 . . . . 5 (𝑅 ∈ TosetRel β†’ (βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5554ralbidv 3178 . . . 4 (𝑅 ∈ TosetRel β†’ (βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘ ∈ 𝑋 (𝑧 ∩ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅𝑏}) ∈ 𝐴))
5643, 55mpbird 257 . . 3 (𝑅 ∈ TosetRel β†’ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴)
5724raleqi 3324 . . . 4 (βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴)
5824, 57raleqbii 3339 . . 3 (βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ βˆ€π‘§ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})βˆ€π‘€ ∈ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})(𝑧 ∩ 𝑀) ∈ 𝐴)
5956, 58sylibr 233 . 2 (𝑅 ∈ TosetRel β†’ βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴)
6014pwexd 5378 . . . 4 (𝑅 ∈ TosetRel β†’ 𝒫 𝑋 ∈ V)
61 ssrab2 4078 . . . . . . . 8 {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} βŠ† 𝑋
6214adantr 482 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ π‘₯ ∈ 𝑋) β†’ 𝑋 ∈ V)
63 elpw2g 5345 . . . . . . . . 9 (𝑋 ∈ V β†’ ({𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} βŠ† 𝑋))
6462, 63syl 17 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ π‘₯ ∈ 𝑋) β†’ ({𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} βŠ† 𝑋))
6561, 64mpbiri 258 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ π‘₯ ∈ 𝑋) β†’ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} ∈ 𝒫 𝑋)
6665fmpttd 7115 . . . . . 6 (𝑅 ∈ TosetRel β†’ (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}):π‘‹βŸΆπ’« 𝑋)
6766frnd 6726 . . . . 5 (𝑅 ∈ TosetRel β†’ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βŠ† 𝒫 𝑋)
6824, 67eqsstrid 4031 . . . 4 (𝑅 ∈ TosetRel β†’ 𝐴 βŠ† 𝒫 𝑋)
6960, 68ssexd 5325 . . 3 (𝑅 ∈ TosetRel β†’ 𝐴 ∈ V)
70 inficl 9420 . . 3 (𝐴 ∈ V β†’ (βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ (fiβ€˜π΄) = 𝐴))
7169, 70syl 17 . 2 (𝑅 ∈ TosetRel β†’ (βˆ€π‘§ ∈ 𝐴 βˆ€π‘€ ∈ 𝐴 (𝑧 ∩ 𝑀) ∈ 𝐴 ↔ (fiβ€˜π΄) = 𝐴))
7259, 71mpbid 231 1 (𝑅 ∈ TosetRel β†’ (fiβ€˜π΄) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  ifcif 4529  π’« cpw 4603   class class class wbr 5149   ↦ cmpt 5232  dom cdm 5677  ran crn 5678  β€˜cfv 6544  ficfi 9405   TosetRel ctsr 18518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-er 8703  df-en 8940  df-fin 8943  df-fi 9406  df-ps 18519  df-tsr 18520
This theorem is referenced by:  ordtbas2  22695
  Copyright terms: Public domain W3C validator