Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1l Structured version   Visualization version   GIF version

Theorem rngonegmn1l 36143
Description: Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1 𝐺 = (1st𝑅)
ringneg.2 𝐻 = (2nd𝑅)
ringneg.3 𝑋 = ran 𝐺
ringneg.4 𝑁 = (inv‘𝐺)
ringneg.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngonegmn1l ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = ((𝑁𝑈)𝐻𝐴))

Proof of Theorem rngonegmn1l
StepHypRef Expression
1 ringneg.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringneg.1 . . . . . . . 8 𝐺 = (1st𝑅)
32rneqi 5858 . . . . . . 7 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2764 . . . . . 6 𝑋 = ran (1st𝑅)
5 ringneg.2 . . . . . 6 𝐻 = (2nd𝑅)
6 ringneg.5 . . . . . 6 𝑈 = (GId‘𝐻)
74, 5, 6rngo1cl 36141 . . . . 5 (𝑅 ∈ RingOps → 𝑈𝑋)
8 ringneg.4 . . . . . . 7 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 36129 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑁𝑈) ∈ 𝑋)
107, 9mpdan 685 . . . . 5 (𝑅 ∈ RingOps → (𝑁𝑈) ∈ 𝑋)
117, 10jca 513 . . . 4 (𝑅 ∈ RingOps → (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋))
122, 5, 1rngodir 36107 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋𝐴𝑋)) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
13123exp2 1354 . . . . . 6 (𝑅 ∈ RingOps → (𝑈𝑋 → ((𝑁𝑈) ∈ 𝑋 → (𝐴𝑋 → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴))))))
1413imp42 428 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋)) ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
1514an32s 650 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋)) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
1611, 15mpidan 687 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
17 eqid 2736 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
182, 1, 8, 17rngoaddneg1 36130 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑈𝐺(𝑁𝑈)) = (GId‘𝐺))
197, 18mpdan 685 . . . . . 6 (𝑅 ∈ RingOps → (𝑈𝐺(𝑁𝑈)) = (GId‘𝐺))
2019adantr 482 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐺(𝑁𝑈)) = (GId‘𝐺))
2120oveq1d 7322 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((GId‘𝐺)𝐻𝐴))
2217, 1, 2, 5rngolz 36124 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺))
2321, 22eqtrd 2776 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = (GId‘𝐺))
245, 4, 6rngolidm 36139 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐻𝐴) = 𝐴)
2524oveq1d 7322 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)) = (𝐴𝐺((𝑁𝑈)𝐻𝐴)))
2616, 23, 253eqtr3rd 2785 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺))
272, 5, 1rngocl 36103 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑁𝑈) ∈ 𝑋𝐴𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
28273expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑁𝑈) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
2928an32s 650 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑁𝑈) ∈ 𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
3010, 29mpidan 687 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
312rngogrpo 36112 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
321, 17, 8grpoinvid1 28935 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ ((𝑁𝑈)𝐻𝐴) ∈ 𝑋) → ((𝑁𝐴) = ((𝑁𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺)))
3331, 32syl3an1 1163 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ((𝑁𝑈)𝐻𝐴) ∈ 𝑋) → ((𝑁𝐴) = ((𝑁𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺)))
3430, 33mpd3an3 1462 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝐴) = ((𝑁𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺)))
3526, 34mpbird 257 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = ((𝑁𝑈)𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  ran crn 5601  cfv 6458  (class class class)co 7307  1st c1st 7861  2nd c2nd 7862  GrpOpcgr 28896  GIdcgi 28897  invcgn 28898  RingOpscrngo 36096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-1st 7863  df-2nd 7864  df-grpo 28900  df-gid 28901  df-ginv 28902  df-ablo 28952  df-ass 36045  df-exid 36047  df-mgmOLD 36051  df-sgrOLD 36063  df-mndo 36069  df-rngo 36097
This theorem is referenced by:  rngoneglmul  36145  idlnegcl  36224
  Copyright terms: Public domain W3C validator