Proof of Theorem rngonegmn1l
Step | Hyp | Ref
| Expression |
1 | | ringneg.3 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
2 | | ringneg.1 |
. . . . . . . 8
⊢ 𝐺 = (1st ‘𝑅) |
3 | 2 | rneqi 5858 |
. . . . . . 7
⊢ ran 𝐺 = ran (1st
‘𝑅) |
4 | 1, 3 | eqtri 2764 |
. . . . . 6
⊢ 𝑋 = ran (1st
‘𝑅) |
5 | | ringneg.2 |
. . . . . 6
⊢ 𝐻 = (2nd ‘𝑅) |
6 | | ringneg.5 |
. . . . . 6
⊢ 𝑈 = (GId‘𝐻) |
7 | 4, 5, 6 | rngo1cl 36141 |
. . . . 5
⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
8 | | ringneg.4 |
. . . . . . 7
⊢ 𝑁 = (inv‘𝐺) |
9 | 2, 1, 8 | rngonegcl 36129 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ∈ 𝑋) → (𝑁‘𝑈) ∈ 𝑋) |
10 | 7, 9 | mpdan 685 |
. . . . 5
⊢ (𝑅 ∈ RingOps → (𝑁‘𝑈) ∈ 𝑋) |
11 | 7, 10 | jca 513 |
. . . 4
⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ∧ (𝑁‘𝑈) ∈ 𝑋)) |
12 | 2, 5, 1 | rngodir 36107 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ∈ 𝑋 ∧ (𝑁‘𝑈) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑈𝐺(𝑁‘𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁‘𝑈)𝐻𝐴))) |
13 | 12 | 3exp2 1354 |
. . . . . 6
⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 → ((𝑁‘𝑈) ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝑈𝐺(𝑁‘𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁‘𝑈)𝐻𝐴)))))) |
14 | 13 | imp42 428 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ∈ 𝑋 ∧ (𝑁‘𝑈) ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺(𝑁‘𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁‘𝑈)𝐻𝐴))) |
15 | 14 | an32s 650 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑈 ∈ 𝑋 ∧ (𝑁‘𝑈) ∈ 𝑋)) → ((𝑈𝐺(𝑁‘𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁‘𝑈)𝐻𝐴))) |
16 | 11, 15 | mpidan 687 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺(𝑁‘𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁‘𝑈)𝐻𝐴))) |
17 | | eqid 2736 |
. . . . . . . 8
⊢
(GId‘𝐺) =
(GId‘𝐺) |
18 | 2, 1, 8, 17 | rngoaddneg1 36130 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ∈ 𝑋) → (𝑈𝐺(𝑁‘𝑈)) = (GId‘𝐺)) |
19 | 7, 18 | mpdan 685 |
. . . . . 6
⊢ (𝑅 ∈ RingOps → (𝑈𝐺(𝑁‘𝑈)) = (GId‘𝐺)) |
20 | 19 | adantr 482 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺(𝑁‘𝑈)) = (GId‘𝐺)) |
21 | 20 | oveq1d 7322 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺(𝑁‘𝑈))𝐻𝐴) = ((GId‘𝐺)𝐻𝐴)) |
22 | 17, 1, 2, 5 | rngolz 36124 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺)) |
23 | 21, 22 | eqtrd 2776 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺(𝑁‘𝑈))𝐻𝐴) = (GId‘𝐺)) |
24 | 5, 4, 6 | rngolidm 36139 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) |
25 | 24 | oveq1d 7322 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴)𝐺((𝑁‘𝑈)𝐻𝐴)) = (𝐴𝐺((𝑁‘𝑈)𝐻𝐴))) |
26 | 16, 23, 25 | 3eqtr3rd 2785 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺((𝑁‘𝑈)𝐻𝐴)) = (GId‘𝐺)) |
27 | 2, 5, 1 | rngocl 36103 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝑁‘𝑈) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝑈)𝐻𝐴) ∈ 𝑋) |
28 | 27 | 3expa 1118 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ (𝑁‘𝑈) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝑈)𝐻𝐴) ∈ 𝑋) |
29 | 28 | an32s 650 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑁‘𝑈) ∈ 𝑋) → ((𝑁‘𝑈)𝐻𝐴) ∈ 𝑋) |
30 | 10, 29 | mpidan 687 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝑈)𝐻𝐴) ∈ 𝑋) |
31 | 2 | rngogrpo 36112 |
. . . 4
⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
32 | 1, 17, 8 | grpoinvid1 28935 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ((𝑁‘𝑈)𝐻𝐴) ∈ 𝑋) → ((𝑁‘𝐴) = ((𝑁‘𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁‘𝑈)𝐻𝐴)) = (GId‘𝐺))) |
33 | 31, 32 | syl3an1 1163 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ((𝑁‘𝑈)𝐻𝐴) ∈ 𝑋) → ((𝑁‘𝐴) = ((𝑁‘𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁‘𝑈)𝐻𝐴)) = (GId‘𝐺))) |
34 | 30, 33 | mpd3an3 1462 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = ((𝑁‘𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁‘𝑈)𝐻𝐴)) = (GId‘𝐺))) |
35 | 26, 34 | mpbird 257 |
1
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘𝑈)𝐻𝐴)) |