MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txbas Structured version   Visualization version   GIF version

Theorem txbas 22941
Description: The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txbas ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem txbas
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑡 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txval.1 . . . . . . . 8 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2 xpeq1 5651 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥 × 𝑦) = (𝑎 × 𝑦))
3 xpeq2 5658 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑎 × 𝑦) = (𝑎 × 𝑏))
42, 3cbvmpov 7456 . . . . . . . . 9 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑎𝑅, 𝑏𝑆 ↦ (𝑎 × 𝑏))
54rnmpo 7493 . . . . . . . 8 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑢 ∣ ∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏)}
61, 5eqtri 2761 . . . . . . 7 𝐵 = {𝑢 ∣ ∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏)}
76eqabi 2878 . . . . . 6 (𝑢𝐵 ↔ ∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏))
8 xpeq1 5651 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝑥 × 𝑦) = (𝑐 × 𝑦))
9 xpeq2 5658 . . . . . . . . . 10 (𝑦 = 𝑑 → (𝑐 × 𝑦) = (𝑐 × 𝑑))
108, 9cbvmpov 7456 . . . . . . . . 9 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑐𝑅, 𝑑𝑆 ↦ (𝑐 × 𝑑))
1110rnmpo 7493 . . . . . . . 8 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑣 ∣ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)}
121, 11eqtri 2761 . . . . . . 7 𝐵 = {𝑣 ∣ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)}
1312eqabi 2878 . . . . . 6 (𝑣𝐵 ↔ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑))
147, 13anbi12i 628 . . . . 5 ((𝑢𝐵𝑣𝐵) ↔ (∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
15 reeanv 3216 . . . . 5 (∃𝑎𝑅𝑐𝑅 (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)) ↔ (∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
1614, 15bitr4i 278 . . . 4 ((𝑢𝐵𝑣𝐵) ↔ ∃𝑎𝑅𝑐𝑅 (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
17 reeanv 3216 . . . . . 6 (∃𝑏𝑆𝑑𝑆 (𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) ↔ (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
18 basis2 22324 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ TopBases ∧ 𝑎𝑅) ∧ (𝑐𝑅𝑢 ∈ (𝑎𝑐))) → ∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)))
1918exp43 438 . . . . . . . . . . . . . . 15 (𝑅 ∈ TopBases → (𝑎𝑅 → (𝑐𝑅 → (𝑢 ∈ (𝑎𝑐) → ∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐))))))
2019imp42 428 . . . . . . . . . . . . . 14 (((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ 𝑢 ∈ (𝑎𝑐)) → ∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)))
21 basis2 22324 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ TopBases ∧ 𝑏𝑆) ∧ (𝑑𝑆𝑣 ∈ (𝑏𝑑))) → ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑)))
2221exp43 438 . . . . . . . . . . . . . . 15 (𝑆 ∈ TopBases → (𝑏𝑆 → (𝑑𝑆 → (𝑣 ∈ (𝑏𝑑) → ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑))))))
2322imp42 428 . . . . . . . . . . . . . 14 (((𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆)) ∧ 𝑣 ∈ (𝑏𝑑)) → ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑)))
24 reeanv 3216 . . . . . . . . . . . . . . 15 (∃𝑥𝑅𝑦𝑆 ((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) ↔ (∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑))))
25 opelxpi 5674 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑥𝑣𝑦) → ⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦))
26 xpss12 5652 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ⊆ (𝑎𝑐) ∧ 𝑦 ⊆ (𝑏𝑑)) → (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))
2725, 26anim12i 614 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑥𝑣𝑦) ∧ (𝑥 ⊆ (𝑎𝑐) ∧ 𝑦 ⊆ (𝑏𝑑))) → (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
2827an4s 659 . . . . . . . . . . . . . . . . 17 (((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
2928reximi 3084 . . . . . . . . . . . . . . . 16 (∃𝑦𝑆 ((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → ∃𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3029reximi 3084 . . . . . . . . . . . . . . 15 (∃𝑥𝑅𝑦𝑆 ((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3124, 30sylbir 234 . . . . . . . . . . . . . 14 ((∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3220, 23, 31syl2an 597 . . . . . . . . . . . . 13 ((((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ 𝑢 ∈ (𝑎𝑐)) ∧ ((𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆)) ∧ 𝑣 ∈ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3332an4s 659 . . . . . . . . . . . 12 ((((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆))) ∧ (𝑢 ∈ (𝑎𝑐) ∧ 𝑣 ∈ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3433ralrimivva 3194 . . . . . . . . . . 11 (((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆))) → ∀𝑢 ∈ (𝑎𝑐)∀𝑣 ∈ (𝑏𝑑)∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
35 eleq1 2822 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑢, 𝑣⟩ → (𝑝 ∈ (𝑥 × 𝑦) ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦)))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑢, 𝑣⟩ → ((𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
37362rexbidv 3210 . . . . . . . . . . . 12 (𝑝 = ⟨𝑢, 𝑣⟩ → (∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
3837ralxp 5801 . . . . . . . . . . 11 (∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∀𝑢 ∈ (𝑎𝑐)∀𝑣 ∈ (𝑏𝑑)∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3934, 38sylibr 233 . . . . . . . . . 10 (((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆))) → ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
4039an4s 659 . . . . . . . . 9 (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ ((𝑎𝑅𝑐𝑅) ∧ (𝑏𝑆𝑑𝑆))) → ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
4140anassrs 469 . . . . . . . 8 ((((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑏𝑆𝑑𝑆)) → ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
42 ineq12 4171 . . . . . . . . . 10 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑢𝑣) = ((𝑎 × 𝑏) ∩ (𝑐 × 𝑑)))
43 inxp 5792 . . . . . . . . . 10 ((𝑎 × 𝑏) ∩ (𝑐 × 𝑑)) = ((𝑎𝑐) × (𝑏𝑑))
4442, 43eqtrdi 2789 . . . . . . . . 9 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑢𝑣) = ((𝑎𝑐) × (𝑏𝑑)))
4544sseq2d 3980 . . . . . . . . . . . 12 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑡 ⊆ (𝑢𝑣) ↔ 𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))))
4645anbi2d 630 . . . . . . . . . . 11 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ((𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
4746rexbidv 3172 . . . . . . . . . 10 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ ∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
481rexeqi 3311 . . . . . . . . . . 11 (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑡 ∈ ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))(𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))))
49 fvex 6859 . . . . . . . . . . . . . 14 (1st𝑧) ∈ V
50 fvex 6859 . . . . . . . . . . . . . 14 (2nd𝑧) ∈ V
5149, 50xpex 7691 . . . . . . . . . . . . 13 ((1st𝑧) × (2nd𝑧)) ∈ V
5251rgenw 3065 . . . . . . . . . . . 12 𝑧 ∈ (𝑅 × 𝑆)((1st𝑧) × (2nd𝑧)) ∈ V
53 vex 3451 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
54 vex 3451 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5553, 54op1std 7935 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
5653, 54op2ndd 7936 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
5755, 56xpeq12d 5668 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) × (2nd𝑧)) = (𝑥 × 𝑦))
5857mpompt 7474 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑅 × 𝑆) ↦ ((1st𝑧) × (2nd𝑧))) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
5958eqcomi 2742 . . . . . . . . . . . . 13 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑧 ∈ (𝑅 × 𝑆) ↦ ((1st𝑧) × (2nd𝑧)))
60 eleq2 2823 . . . . . . . . . . . . . 14 (𝑡 = ((1st𝑧) × (2nd𝑧)) → (𝑝𝑡𝑝 ∈ ((1st𝑧) × (2nd𝑧))))
61 sseq1 3973 . . . . . . . . . . . . . 14 (𝑡 = ((1st𝑧) × (2nd𝑧)) → (𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑)) ↔ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6260, 61anbi12d 632 . . . . . . . . . . . . 13 (𝑡 = ((1st𝑧) × (2nd𝑧)) → ((𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ (𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
6359, 62rexrnmptw 7049 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝑅 × 𝑆)((1st𝑧) × (2nd𝑧)) ∈ V → (∃𝑡 ∈ ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))(𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
6452, 63ax-mp 5 . . . . . . . . . . 11 (∃𝑡 ∈ ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))(𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6557eleq2d 2820 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ↔ 𝑝 ∈ (𝑥 × 𝑦)))
6657sseq1d 3979 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑)) ↔ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6765, 66anbi12d 632 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
6867rexxp 5802 . . . . . . . . . . 11 (∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6948, 64, 683bitri 297 . . . . . . . . . 10 (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
7047, 69bitrdi 287 . . . . . . . . 9 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ ∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
7144, 70raleqbidv 3318 . . . . . . . 8 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
7241, 71syl5ibrcom 247 . . . . . . 7 ((((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑏𝑆𝑑𝑆)) → ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7372rexlimdvva 3202 . . . . . 6 (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) → (∃𝑏𝑆𝑑𝑆 (𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7417, 73biimtrrid 242 . . . . 5 (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) → ((∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7574rexlimdvva 3202 . . . 4 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → (∃𝑎𝑅𝑐𝑅 (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7616, 75biimtrid 241 . . 3 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ((𝑢𝐵𝑣𝐵) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7776ralrimivv 3192 . 2 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ∀𝑢𝐵𝑣𝐵𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)))
781txbasex 22940 . . 3 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ V)
79 isbasis2g 22321 . . 3 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑢𝐵𝑣𝐵𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
8078, 79syl 17 . 2 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → (𝐵 ∈ TopBases ↔ ∀𝑢𝐵𝑣𝐵𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
8177, 80mpbird 257 1 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3061  wrex 3070  Vcvv 3447  cin 3913  wss 3914  cop 4596  cmpt 5192   × cxp 5635  ran crn 5638  cfv 6500  cmpo 7363  1st c1st 7923  2nd c2nd 7924  TopBasesctb 22318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-fv 6508  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-bases 22319
This theorem is referenced by:  txtop  22943  tx2ndc  23025  mbfimaopnlem  25042
  Copyright terms: Public domain W3C validator