MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txbas Structured version   Visualization version   GIF version

Theorem txbas 22699
Description: The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txbas ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem txbas
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑡 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txval.1 . . . . . . . 8 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2 xpeq1 5602 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥 × 𝑦) = (𝑎 × 𝑦))
3 xpeq2 5609 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑎 × 𝑦) = (𝑎 × 𝑏))
42, 3cbvmpov 7361 . . . . . . . . 9 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑎𝑅, 𝑏𝑆 ↦ (𝑎 × 𝑏))
54rnmpo 7398 . . . . . . . 8 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑢 ∣ ∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏)}
61, 5eqtri 2767 . . . . . . 7 𝐵 = {𝑢 ∣ ∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏)}
76abeq2i 2876 . . . . . 6 (𝑢𝐵 ↔ ∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏))
8 xpeq1 5602 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝑥 × 𝑦) = (𝑐 × 𝑦))
9 xpeq2 5609 . . . . . . . . . 10 (𝑦 = 𝑑 → (𝑐 × 𝑦) = (𝑐 × 𝑑))
108, 9cbvmpov 7361 . . . . . . . . 9 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑐𝑅, 𝑑𝑆 ↦ (𝑐 × 𝑑))
1110rnmpo 7398 . . . . . . . 8 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑣 ∣ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)}
121, 11eqtri 2767 . . . . . . 7 𝐵 = {𝑣 ∣ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)}
1312abeq2i 2876 . . . . . 6 (𝑣𝐵 ↔ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑))
147, 13anbi12i 626 . . . . 5 ((𝑢𝐵𝑣𝐵) ↔ (∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
15 reeanv 3294 . . . . 5 (∃𝑎𝑅𝑐𝑅 (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)) ↔ (∃𝑎𝑅𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑐𝑅𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
1614, 15bitr4i 277 . . . 4 ((𝑢𝐵𝑣𝐵) ↔ ∃𝑎𝑅𝑐𝑅 (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
17 reeanv 3294 . . . . . 6 (∃𝑏𝑆𝑑𝑆 (𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) ↔ (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)))
18 basis2 22082 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ TopBases ∧ 𝑎𝑅) ∧ (𝑐𝑅𝑢 ∈ (𝑎𝑐))) → ∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)))
1918exp43 436 . . . . . . . . . . . . . . 15 (𝑅 ∈ TopBases → (𝑎𝑅 → (𝑐𝑅 → (𝑢 ∈ (𝑎𝑐) → ∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐))))))
2019imp42 426 . . . . . . . . . . . . . 14 (((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ 𝑢 ∈ (𝑎𝑐)) → ∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)))
21 basis2 22082 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ TopBases ∧ 𝑏𝑆) ∧ (𝑑𝑆𝑣 ∈ (𝑏𝑑))) → ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑)))
2221exp43 436 . . . . . . . . . . . . . . 15 (𝑆 ∈ TopBases → (𝑏𝑆 → (𝑑𝑆 → (𝑣 ∈ (𝑏𝑑) → ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑))))))
2322imp42 426 . . . . . . . . . . . . . 14 (((𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆)) ∧ 𝑣 ∈ (𝑏𝑑)) → ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑)))
24 reeanv 3294 . . . . . . . . . . . . . . 15 (∃𝑥𝑅𝑦𝑆 ((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) ↔ (∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑))))
25 opelxpi 5625 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑥𝑣𝑦) → ⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦))
26 xpss12 5603 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ⊆ (𝑎𝑐) ∧ 𝑦 ⊆ (𝑏𝑑)) → (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))
2725, 26anim12i 612 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑥𝑣𝑦) ∧ (𝑥 ⊆ (𝑎𝑐) ∧ 𝑦 ⊆ (𝑏𝑑))) → (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
2827an4s 656 . . . . . . . . . . . . . . . . 17 (((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
2928reximi 3176 . . . . . . . . . . . . . . . 16 (∃𝑦𝑆 ((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → ∃𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3029reximi 3176 . . . . . . . . . . . . . . 15 (∃𝑥𝑅𝑦𝑆 ((𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3124, 30sylbir 234 . . . . . . . . . . . . . 14 ((∃𝑥𝑅 (𝑢𝑥𝑥 ⊆ (𝑎𝑐)) ∧ ∃𝑦𝑆 (𝑣𝑦𝑦 ⊆ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3220, 23, 31syl2an 595 . . . . . . . . . . . . 13 ((((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ 𝑢 ∈ (𝑎𝑐)) ∧ ((𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆)) ∧ 𝑣 ∈ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3332an4s 656 . . . . . . . . . . . 12 ((((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆))) ∧ (𝑢 ∈ (𝑎𝑐) ∧ 𝑣 ∈ (𝑏𝑑))) → ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3433ralrimivva 3116 . . . . . . . . . . 11 (((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆))) → ∀𝑢 ∈ (𝑎𝑐)∀𝑣 ∈ (𝑏𝑑)∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
35 eleq1 2827 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑢, 𝑣⟩ → (𝑝 ∈ (𝑥 × 𝑦) ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦)))
3635anbi1d 629 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑢, 𝑣⟩ → ((𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
37362rexbidv 3230 . . . . . . . . . . . 12 (𝑝 = ⟨𝑢, 𝑣⟩ → (∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
3837ralxp 5747 . . . . . . . . . . 11 (∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∀𝑢 ∈ (𝑎𝑐)∀𝑣 ∈ (𝑏𝑑)∃𝑥𝑅𝑦𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
3934, 38sylibr 233 . . . . . . . . . 10 (((𝑅 ∈ TopBases ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏𝑆𝑑𝑆))) → ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
4039an4s 656 . . . . . . . . 9 (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ ((𝑎𝑅𝑐𝑅) ∧ (𝑏𝑆𝑑𝑆))) → ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
4140anassrs 467 . . . . . . . 8 ((((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑏𝑆𝑑𝑆)) → ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
42 ineq12 4146 . . . . . . . . . 10 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑢𝑣) = ((𝑎 × 𝑏) ∩ (𝑐 × 𝑑)))
43 inxp 5738 . . . . . . . . . 10 ((𝑎 × 𝑏) ∩ (𝑐 × 𝑑)) = ((𝑎𝑐) × (𝑏𝑑))
4442, 43eqtrdi 2795 . . . . . . . . 9 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑢𝑣) = ((𝑎𝑐) × (𝑏𝑑)))
4544sseq2d 3957 . . . . . . . . . . . 12 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑡 ⊆ (𝑢𝑣) ↔ 𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))))
4645anbi2d 628 . . . . . . . . . . 11 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ((𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
4746rexbidv 3227 . . . . . . . . . 10 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ ∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
481rexeqi 3345 . . . . . . . . . . 11 (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑡 ∈ ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))(𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))))
49 fvex 6781 . . . . . . . . . . . . . 14 (1st𝑧) ∈ V
50 fvex 6781 . . . . . . . . . . . . . 14 (2nd𝑧) ∈ V
5149, 50xpex 7594 . . . . . . . . . . . . 13 ((1st𝑧) × (2nd𝑧)) ∈ V
5251rgenw 3077 . . . . . . . . . . . 12 𝑧 ∈ (𝑅 × 𝑆)((1st𝑧) × (2nd𝑧)) ∈ V
53 vex 3434 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
54 vex 3434 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5553, 54op1std 7827 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
5653, 54op2ndd 7828 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
5755, 56xpeq12d 5619 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) × (2nd𝑧)) = (𝑥 × 𝑦))
5857mpompt 7379 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑅 × 𝑆) ↦ ((1st𝑧) × (2nd𝑧))) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
5958eqcomi 2748 . . . . . . . . . . . . 13 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑧 ∈ (𝑅 × 𝑆) ↦ ((1st𝑧) × (2nd𝑧)))
60 eleq2 2828 . . . . . . . . . . . . . 14 (𝑡 = ((1st𝑧) × (2nd𝑧)) → (𝑝𝑡𝑝 ∈ ((1st𝑧) × (2nd𝑧))))
61 sseq1 3950 . . . . . . . . . . . . . 14 (𝑡 = ((1st𝑧) × (2nd𝑧)) → (𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑)) ↔ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6260, 61anbi12d 630 . . . . . . . . . . . . 13 (𝑡 = ((1st𝑧) × (2nd𝑧)) → ((𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ (𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
6359, 62rexrnmptw 6965 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝑅 × 𝑆)((1st𝑧) × (2nd𝑧)) ∈ V → (∃𝑡 ∈ ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))(𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
6452, 63ax-mp 5 . . . . . . . . . . 11 (∃𝑡 ∈ ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))(𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6557eleq2d 2825 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ↔ 𝑝 ∈ (𝑥 × 𝑦)))
6657sseq1d 3956 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑)) ↔ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6765, 66anbi12d 630 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
6867rexxp 5748 . . . . . . . . . . 11 (∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st𝑧) × (2nd𝑧)) ∧ ((1st𝑧) × (2nd𝑧)) ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
6948, 64, 683bitri 296 . . . . . . . . . 10 (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ ((𝑎𝑐) × (𝑏𝑑))) ↔ ∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑))))
7047, 69bitrdi 286 . . . . . . . . 9 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ ∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
7144, 70raleqbidv 3334 . . . . . . . 8 ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)) ↔ ∀𝑝 ∈ ((𝑎𝑐) × (𝑏𝑑))∃𝑥𝑅𝑦𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎𝑐) × (𝑏𝑑)))))
7241, 71syl5ibrcom 246 . . . . . . 7 ((((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) ∧ (𝑏𝑆𝑑𝑆)) → ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7372rexlimdvva 3224 . . . . . 6 (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) → (∃𝑏𝑆𝑑𝑆 (𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7417, 73syl5bir 242 . . . . 5 (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎𝑅𝑐𝑅)) → ((∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7574rexlimdvva 3224 . . . 4 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → (∃𝑎𝑅𝑐𝑅 (∃𝑏𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑𝑆 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7616, 75syl5bi 241 . . 3 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ((𝑢𝐵𝑣𝐵) → ∀𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
7776ralrimivv 3115 . 2 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ∀𝑢𝐵𝑣𝐵𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣)))
781txbasex 22698 . . 3 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ V)
79 isbasis2g 22079 . . 3 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑢𝐵𝑣𝐵𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
8078, 79syl 17 . 2 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → (𝐵 ∈ TopBases ↔ ∀𝑢𝐵𝑣𝐵𝑝 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑝𝑡𝑡 ⊆ (𝑢𝑣))))
8177, 80mpbird 256 1 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  {cab 2716  wral 3065  wrex 3066  Vcvv 3430  cin 3890  wss 3891  cop 4572  cmpt 5161   × cxp 5586  ran crn 5589  cfv 6430  cmpo 7270  1st c1st 7815  2nd c2nd 7816  TopBasesctb 22076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-bases 22077
This theorem is referenced by:  txtop  22701  tx2ndc  22783  mbfimaopnlem  24800
  Copyright terms: Public domain W3C validator