Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nocvxminlem Structured version   Visualization version   GIF version

Theorem nocvxminlem 33360
Description: Lemma for nocvxmin 33361. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxminlem ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑌,𝑧
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem nocvxminlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq1 5033 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 <s 𝑧𝑋 <s 𝑧))
21anbi1d 632 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑦)))
32imbi1d 345 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
43ralbidv 3162 . . . . . . . . . . 11 (𝑥 = 𝑋 → (∀𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
5 breq2 5034 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑧 <s 𝑦𝑧 <s 𝑌))
65anbi2d 631 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑋 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑌)))
76imbi1d 345 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
87ralbidv 3162 . . . . . . . . . . 11 (𝑦 = 𝑌 → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
94, 8rspc2v 3581 . . . . . . . . . 10 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
10 breq2 5034 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑋 <s 𝑧𝑋 <s 𝑤))
11 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧 <s 𝑌𝑤 <s 𝑌))
1210, 11anbi12d 633 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑋 <s 𝑧𝑧 <s 𝑌) ↔ (𝑋 <s 𝑤𝑤 <s 𝑌)))
13 eleq1w 2872 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
1412, 13imbi12d 348 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) ↔ ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
1514rspcv 3566 . . . . . . . . . . . . 13 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
16 bdaydm 33357 . . . . . . . . . . . . . . . . . . . . . 22 dom bday = No
1716sseq2i 3944 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday 𝐴 No )
18 bdayfun 33355 . . . . . . . . . . . . . . . . . . . . . 22 Fun bday
19 funfvima2 6971 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2018, 19mpan 689 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2117, 20sylbir 238 . . . . . . . . . . . . . . . . . . . 20 (𝐴 No → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2221imp 410 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝑤) ∈ ( bday 𝐴))
23 intss1 4853 . . . . . . . . . . . . . . . . . . 19 (( bday 𝑤) ∈ ( bday 𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
2422, 23syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
25 imassrn 5907 . . . . . . . . . . . . . . . . . . . . 21 ( bday 𝐴) ⊆ ran bday
26 bdayrn 33358 . . . . . . . . . . . . . . . . . . . . 21 ran bday = On
2725, 26sseqtri 3951 . . . . . . . . . . . . . . . . . . . 20 ( bday 𝐴) ⊆ On
2822ne0d 4251 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ≠ ∅)
29 oninton 7495 . . . . . . . . . . . . . . . . . . . 20 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ On)
3027, 28, 29sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ∈ On)
31 bdayelon 33359 . . . . . . . . . . . . . . . . . . 19 ( bday 𝑤) ∈ On
32 ontri1 6193 . . . . . . . . . . . . . . . . . . 19 (( ( bday 𝐴) ∈ On ∧ ( bday 𝑤) ∈ On) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3330, 31, 32sylancl 589 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3424, 33mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑤𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝐴))
3534ex 416 . . . . . . . . . . . . . . . 16 (𝐴 No → (𝑤𝐴 → ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
36 eleq2 2878 . . . . . . . . . . . . . . . . . 18 (( bday 𝑋) = ( bday 𝐴) → (( bday 𝑤) ∈ ( bday 𝑋) ↔ ( bday 𝑤) ∈ ( bday 𝐴)))
3736notbid 321 . . . . . . . . . . . . . . . . 17 (( bday 𝑋) = ( bday 𝐴) → (¬ ( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3837biimprcd 253 . . . . . . . . . . . . . . . 16 (¬ ( bday 𝑤) ∈ ( bday 𝐴) → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
3935, 38syl6 35 . . . . . . . . . . . . . . 15 (𝐴 No → (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4039com3l 89 . . . . . . . . . . . . . 14 (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4140adantrd 495 . . . . . . . . . . . . 13 (𝑤𝐴 → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4215, 41syl8 76 . . . . . . . . . . . 12 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4342com35 98 . . . . . . . . . . 11 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4443com4l 92 . . . . . . . . . 10 (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
459, 44syl6 35 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4645com3l 89 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4746impcom 411 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4847imp42 430 . . . . . 6 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4948con2d 136 . . . . 5 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
50 3anass 1092 . . . . . . 7 ((( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5150notbii 323 . . . . . 6 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
52 imnan 403 . . . . . 6 ((( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5351, 52bitr4i 281 . . . . 5 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5449, 53sylibr 237 . . . 4 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
5554nrexdv 3229 . . 3 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
56 ssel 3908 . . . . . . . . 9 (𝐴 No → (𝑋𝐴𝑋 No ))
57 ssel 3908 . . . . . . . . 9 (𝐴 No → (𝑌𝐴𝑌 No ))
5856, 57anim12d 611 . . . . . . . 8 (𝐴 No → ((𝑋𝐴𝑌𝐴) → (𝑋 No 𝑌 No )))
5958imp 410 . . . . . . 7 ((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) → (𝑋 No 𝑌 No ))
60 eqtr3 2820 . . . . . . 7 ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ( bday 𝑋) = ( bday 𝑌))
6159, 60anim12i 615 . . . . . 6 (((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6261anasss 470 . . . . 5 ((𝐴 No ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6362adantlr 714 . . . 4 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
64 nodense 33309 . . . . 5 (((𝑋 No 𝑌 No ) ∧ (( bday 𝑋) = ( bday 𝑌) ∧ 𝑋 <s 𝑌)) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6564anassrs 471 . . . 4 ((((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6663, 65sylan 583 . . 3 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6755, 66mtand 815 . 2 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ 𝑋 <s 𝑌)
6867ex 416 1 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  wss 3881  c0 4243   cint 4838   class class class wbr 5030  dom cdm 5519  ran crn 5520  cima 5522  Oncon0 6159  Fun wfun 6318  cfv 6324   No csur 33260   <s cslt 33261   bday cbday 33262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1o 8085  df-2o 8086  df-no 33263  df-slt 33264  df-bday 33265
This theorem is referenced by:  nocvxmin  33361
  Copyright terms: Public domain W3C validator