Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nocvxminlem Structured version   Visualization version   GIF version

Theorem nocvxminlem 33538
Description: Lemma for nocvxmin 33539. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxminlem ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑌,𝑧
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem nocvxminlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq1 5036 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 <s 𝑧𝑋 <s 𝑧))
21anbi1d 633 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑦)))
32imbi1d 346 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
43ralbidv 3127 . . . . . . . . . . 11 (𝑥 = 𝑋 → (∀𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
5 breq2 5037 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑧 <s 𝑦𝑧 <s 𝑌))
65anbi2d 632 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑋 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑌)))
76imbi1d 346 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
87ralbidv 3127 . . . . . . . . . . 11 (𝑦 = 𝑌 → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
94, 8rspc2v 3552 . . . . . . . . . 10 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
10 breq2 5037 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑋 <s 𝑧𝑋 <s 𝑤))
11 breq1 5036 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧 <s 𝑌𝑤 <s 𝑌))
1210, 11anbi12d 634 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑋 <s 𝑧𝑧 <s 𝑌) ↔ (𝑋 <s 𝑤𝑤 <s 𝑌)))
13 eleq1w 2835 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
1412, 13imbi12d 349 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) ↔ ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
1514rspcv 3537 . . . . . . . . . . . . 13 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
16 bdaydm 33535 . . . . . . . . . . . . . . . . . . . . . 22 dom bday = No
1716sseq2i 3922 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday 𝐴 No )
18 bdayfun 33533 . . . . . . . . . . . . . . . . . . . . . 22 Fun bday
19 funfvima2 6986 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2018, 19mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2117, 20sylbir 238 . . . . . . . . . . . . . . . . . . . 20 (𝐴 No → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2221imp 411 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝑤) ∈ ( bday 𝐴))
23 intss1 4854 . . . . . . . . . . . . . . . . . . 19 (( bday 𝑤) ∈ ( bday 𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
2422, 23syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
25 imassrn 5913 . . . . . . . . . . . . . . . . . . . . 21 ( bday 𝐴) ⊆ ran bday
26 bdayrn 33536 . . . . . . . . . . . . . . . . . . . . 21 ran bday = On
2725, 26sseqtri 3929 . . . . . . . . . . . . . . . . . . . 20 ( bday 𝐴) ⊆ On
2822ne0d 4235 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ≠ ∅)
29 oninton 7515 . . . . . . . . . . . . . . . . . . . 20 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ On)
3027, 28, 29sylancr 591 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ∈ On)
31 bdayelon 33537 . . . . . . . . . . . . . . . . . . 19 ( bday 𝑤) ∈ On
32 ontri1 6204 . . . . . . . . . . . . . . . . . . 19 (( ( bday 𝐴) ∈ On ∧ ( bday 𝑤) ∈ On) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3330, 31, 32sylancl 590 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3424, 33mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑤𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝐴))
3534ex 417 . . . . . . . . . . . . . . . 16 (𝐴 No → (𝑤𝐴 → ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
36 eleq2 2841 . . . . . . . . . . . . . . . . . 18 (( bday 𝑋) = ( bday 𝐴) → (( bday 𝑤) ∈ ( bday 𝑋) ↔ ( bday 𝑤) ∈ ( bday 𝐴)))
3736notbid 322 . . . . . . . . . . . . . . . . 17 (( bday 𝑋) = ( bday 𝐴) → (¬ ( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3837biimprcd 253 . . . . . . . . . . . . . . . 16 (¬ ( bday 𝑤) ∈ ( bday 𝐴) → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
3935, 38syl6 35 . . . . . . . . . . . . . . 15 (𝐴 No → (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4039com3l 89 . . . . . . . . . . . . . 14 (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4140adantrd 496 . . . . . . . . . . . . 13 (𝑤𝐴 → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4215, 41syl8 76 . . . . . . . . . . . 12 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4342com35 98 . . . . . . . . . . 11 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4443com4l 92 . . . . . . . . . 10 (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
459, 44syl6 35 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4645com3l 89 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4746impcom 412 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4847imp42 431 . . . . . 6 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4948con2d 136 . . . . 5 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
50 3anass 1093 . . . . . . 7 ((( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5150notbii 324 . . . . . 6 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
52 imnan 404 . . . . . 6 ((( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5351, 52bitr4i 281 . . . . 5 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5449, 53sylibr 237 . . . 4 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
5554nrexdv 3195 . . 3 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
56 ssel 3886 . . . . . . . . 9 (𝐴 No → (𝑋𝐴𝑋 No ))
57 ssel 3886 . . . . . . . . 9 (𝐴 No → (𝑌𝐴𝑌 No ))
5856, 57anim12d 612 . . . . . . . 8 (𝐴 No → ((𝑋𝐴𝑌𝐴) → (𝑋 No 𝑌 No )))
5958imp 411 . . . . . . 7 ((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) → (𝑋 No 𝑌 No ))
60 eqtr3 2781 . . . . . . 7 ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ( bday 𝑋) = ( bday 𝑌))
6159, 60anim12i 616 . . . . . 6 (((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6261anasss 471 . . . . 5 ((𝐴 No ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6362adantlr 715 . . . 4 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
64 nodense 33461 . . . . 5 (((𝑋 No 𝑌 No ) ∧ (( bday 𝑋) = ( bday 𝑌) ∧ 𝑋 <s 𝑌)) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6564anassrs 472 . . . 4 ((((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6663, 65sylan 584 . . 3 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6755, 66mtand 816 . 2 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ 𝑋 <s 𝑌)
6867ex 417 1 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  wrex 3072  wss 3859  c0 4226   cint 4839   class class class wbr 5033  dom cdm 5525  ran crn 5526  cima 5528  Oncon0 6170  Fun wfun 6330  cfv 6336   No csur 33409   <s cslt 33410   bday cbday 33411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6173  df-on 6174  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-1o 8113  df-2o 8114  df-no 33412  df-slt 33413  df-bday 33414
This theorem is referenced by:  nocvxmin  33539
  Copyright terms: Public domain W3C validator