Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prnc Structured version   Visualization version   GIF version

Theorem prnc 38061
Description: A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
prnc.1 𝐺 = (1st𝑅)
prnc.2 𝐻 = (2nd𝑅)
prnc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
prnc ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦

Proof of Theorem prnc
Dummy variables 𝑗 𝑢 𝑣 𝑤 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngorngo 37994 . . . . 5 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 ssrab2 4043 . . . . . . 7 {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋
32a1i 11 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋)
4 prnc.1 . . . . . . . . 9 𝐺 = (1st𝑅)
5 prnc.3 . . . . . . . . 9 𝑋 = ran 𝐺
6 eqid 2729 . . . . . . . . 9 (GId‘𝐺) = (GId‘𝐺)
74, 5, 6rngo0cl 37913 . . . . . . . 8 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
87adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) ∈ 𝑋)
9 prnc.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
106, 5, 4, 9rngolz 37916 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺))
1110eqcomd 2735 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴))
12 oveq1 7394 . . . . . . . . 9 (𝑦 = (GId‘𝐺) → (𝑦𝐻𝐴) = ((GId‘𝐺)𝐻𝐴))
1312rspceeqv 3611 . . . . . . . 8 (((GId‘𝐺) ∈ 𝑋 ∧ (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴)) → ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))
148, 11, 13syl2anc 584 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))
15 eqeq1 2733 . . . . . . . . 9 (𝑥 = (GId‘𝐺) → (𝑥 = (𝑦𝐻𝐴) ↔ (GId‘𝐺) = (𝑦𝐻𝐴)))
1615rexbidv 3157 . . . . . . . 8 (𝑥 = (GId‘𝐺) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)))
1716elrab 3659 . . . . . . 7 ((GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((GId‘𝐺) ∈ 𝑋 ∧ ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)))
188, 14, 17sylanbrc 583 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
19 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑦𝐻𝐴)))
2019rexbidv 3157 . . . . . . . . . 10 (𝑥 = 𝑢 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝑢 = (𝑦𝐻𝐴)))
21 oveq1 7394 . . . . . . . . . . . 12 (𝑦 = 𝑟 → (𝑦𝐻𝐴) = (𝑟𝐻𝐴))
2221eqeq2d 2740 . . . . . . . . . . 11 (𝑦 = 𝑟 → (𝑢 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑟𝐻𝐴)))
2322cbvrexvw 3216 . . . . . . . . . 10 (∃𝑦𝑋 𝑢 = (𝑦𝐻𝐴) ↔ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴))
2420, 23bitrdi 287 . . . . . . . . 9 (𝑥 = 𝑢 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)))
2524elrab 3659 . . . . . . . 8 (𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑢𝑋 ∧ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)))
26 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑦𝐻𝐴)))
2726rexbidv 3157 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝑣 = (𝑦𝐻𝐴)))
28 oveq1 7394 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑠 → (𝑦𝐻𝐴) = (𝑠𝐻𝐴))
2928eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑣 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑠𝐻𝐴)))
3029cbvrexvw 3216 . . . . . . . . . . . . . . . 16 (∃𝑦𝑋 𝑣 = (𝑦𝐻𝐴) ↔ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴))
3127, 30bitrdi 287 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)))
3231elrab 3659 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑣𝑋 ∧ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)))
334, 9, 5rngodir 37899 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋𝐴𝑋)) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
34333exp2 1355 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑟𝑋 → (𝑠𝑋 → (𝐴𝑋 → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))))))
3534imp42 426 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
364, 5rngogcl 37906 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐺𝑠) ∈ 𝑋)
37363expib 1122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ RingOps → ((𝑟𝑋𝑠𝑋) → (𝑟𝐺𝑠) ∈ 𝑋))
3837imdistani 568 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) → (𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋))
394, 9, 5rngocl 37895 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋)
40393expa 1118 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋)
41 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)
42 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑟𝐺𝑠) → (𝑦𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴))
4342rspceeqv 3611 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑟𝐺𝑠) ∈ 𝑋 ∧ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)) → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
4441, 43mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟𝐺𝑠) ∈ 𝑋 → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
4544ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
46 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
4746rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
4847elrab 3659 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
4940, 45, 48sylanbrc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5038, 49sylan 580 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5135, 50eqeltrrd 2829 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5251an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5352anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑠𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
54 oveq2 7395 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
5554eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑠𝐻𝐴) → (((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5653, 55syl5ibrcom 247 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑠𝑋) → (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5756rexlimdva 3134 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5857adantld 490 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ((𝑣𝑋 ∧ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5932, 58biimtrid 242 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
6059ralrimiv 3124 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
614, 9, 5rngoass 37900 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋𝐴𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
62613exp2 1355 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ RingOps → (𝑤𝑋 → (𝑟𝑋 → (𝐴𝑋 → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))))))
6362imp42 426 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
6463an32s 652 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
654, 9, 5rngocl 37895 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ 𝑤𝑋𝑟𝑋) → (𝑤𝐻𝑟) ∈ 𝑋)
66653expib 1122 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ RingOps → ((𝑤𝑋𝑟𝑋) → (𝑤𝐻𝑟) ∈ 𝑋))
6766imdistani 568 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) → (𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋))
684, 9, 5rngocl 37895 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋)
69683expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋)
70 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)
71 oveq1 7394 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤𝐻𝑟) → (𝑦𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴))
7271rspceeqv 3611 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝐻𝑟) ∈ 𝑋 ∧ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)) → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
7370, 72mpan2 691 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐻𝑟) ∈ 𝑋 → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
7473ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
75 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
7675rexbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
7776elrab 3659 . . . . . . . . . . . . . . . . . 18 (((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
7869, 74, 77sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
7967, 78sylan 580 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8079an32s 652 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8164, 80eqeltrrd 2829 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8281anass1rs 655 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑤𝑋) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8382ralrimiva 3125 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8460, 83jca 511 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
85 oveq1 7394 . . . . . . . . . . . . . 14 (𝑢 = (𝑟𝐻𝐴) → (𝑢𝐺𝑣) = ((𝑟𝐻𝐴)𝐺𝑣))
8685eleq1d 2813 . . . . . . . . . . . . 13 (𝑢 = (𝑟𝐻𝐴) → ((𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
8786ralbidv 3156 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
88 oveq2 7395 . . . . . . . . . . . . . 14 (𝑢 = (𝑟𝐻𝐴) → (𝑤𝐻𝑢) = (𝑤𝐻(𝑟𝐻𝐴)))
8988eleq1d 2813 . . . . . . . . . . . . 13 (𝑢 = (𝑟𝐻𝐴) → ((𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
9089ralbidv 3156 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐻𝐴) → (∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
9187, 90anbi12d 632 . . . . . . . . . . 11 (𝑢 = (𝑟𝐻𝐴) → ((∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}) ↔ (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9284, 91syl5ibrcom 247 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9392rexlimdva 3134 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9493adantld 490 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑢𝑋 ∧ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9525, 94biimtrid 242 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9695ralrimiv 3124 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
973, 18, 963jca 1128 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
981, 97sylan 580 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
994, 9, 5, 6isidlc 38009 . . . . 5 (𝑅 ∈ CRingOps → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))))
10099adantr 480 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))))
10198, 100mpbird 257 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅))
102 simpr 484 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → 𝐴𝑋)
1034rneqi 5901 . . . . . . . . . 10 ran 𝐺 = ran (1st𝑅)
1045, 103eqtri 2752 . . . . . . . . 9 𝑋 = ran (1st𝑅)
105 eqid 2729 . . . . . . . . 9 (GId‘𝐻) = (GId‘𝐻)
106104, 9, 105rngo1cl 37933 . . . . . . . 8 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
107106adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐻) ∈ 𝑋)
1089, 104, 105rngolidm 37931 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐻)𝐻𝐴) = 𝐴)
109108eqcomd 2735 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴 = ((GId‘𝐻)𝐻𝐴))
110 oveq1 7394 . . . . . . . 8 (𝑦 = (GId‘𝐻) → (𝑦𝐻𝐴) = ((GId‘𝐻)𝐻𝐴))
111110rspceeqv 3611 . . . . . . 7 (((GId‘𝐻) ∈ 𝑋𝐴 = ((GId‘𝐻)𝐻𝐴)) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
112107, 109, 111syl2anc 584 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
1131, 112sylan 580 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
114 eqeq1 2733 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝐴 = (𝑦𝐻𝐴)))
115114rexbidv 3157 . . . . . 6 (𝑥 = 𝐴 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴)))
116115elrab 3659 . . . . 5 (𝐴 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝐴𝑋 ∧ ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴)))
117102, 113, 116sylanbrc 583 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → 𝐴 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
118117snssd 4773 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
119 snssg 4747 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑗 ↔ {𝐴} ⊆ 𝑗))
120119biimpar 477 . . . . . . . 8 ((𝐴𝑋 ∧ {𝐴} ⊆ 𝑗) → 𝐴𝑗)
1214, 9, 5idllmulcl 38014 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ (𝐴𝑗𝑦𝑋)) → (𝑦𝐻𝐴) ∈ 𝑗)
122121anassrs 467 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑦𝑋) → (𝑦𝐻𝐴) ∈ 𝑗)
123 eleq1 2816 . . . . . . . . . . . . . 14 (𝑥 = (𝑦𝐻𝐴) → (𝑥𝑗 ↔ (𝑦𝐻𝐴) ∈ 𝑗))
124122, 123syl5ibrcom 247 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑦𝑋) → (𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
125124rexlimdva 3134 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
126125adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑥𝑋) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
127126ralrimiva 3125 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → ∀𝑥𝑋 (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
128 rabss 4035 . . . . . . . . . 10 ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗 ↔ ∀𝑥𝑋 (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
129127, 128sylibr 234 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)
130129ex 412 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝐴𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
131120, 130syl5 34 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → ((𝐴𝑋 ∧ {𝐴} ⊆ 𝑗) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
132131expdimp 452 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑋) → ({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
133132an32s 652 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑗 ∈ (Idl‘𝑅)) → ({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
134133ralrimiva 3125 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
1351, 134sylan 580 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
136101, 118, 1353jca 1128 . 2 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)))
137 snssi 4772 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
1384, 5igenval2 38060 . . 3 ((𝑅 ∈ RingOps ∧ {𝐴} ⊆ 𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))))
1391, 137, 138syl2an 596 . 2 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))))
140136, 139mpbird 257 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914  {csn 4589  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  GIdcgi 30419  RingOpscrngo 37888  CRingOpsccring 37987  Idlcidl 38001   IdlGen cigen 38053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889  df-com2 37984  df-crngo 37988  df-idl 38004  df-igen 38054
This theorem is referenced by:  isfldidl  38062  ispridlc  38064
  Copyright terms: Public domain W3C validator