| Step | Hyp | Ref
| Expression |
| 1 | | crngorngo 38007 |
. . . . 5
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈
RingOps) |
| 2 | | ssrab2 4080 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 |
| 3 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋) |
| 4 | | prnc.1 |
. . . . . . . . 9
⊢ 𝐺 = (1st ‘𝑅) |
| 5 | | prnc.3 |
. . . . . . . . 9
⊢ 𝑋 = ran 𝐺 |
| 6 | | eqid 2737 |
. . . . . . . . 9
⊢
(GId‘𝐺) =
(GId‘𝐺) |
| 7 | 4, 5, 6 | rngo0cl 37926 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps →
(GId‘𝐺) ∈ 𝑋) |
| 8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐺) ∈ 𝑋) |
| 9 | | prnc.2 |
. . . . . . . . . 10
⊢ 𝐻 = (2nd ‘𝑅) |
| 10 | 6, 5, 4, 9 | rngolz 37929 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺)) |
| 11 | 10 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴)) |
| 12 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑦 = (GId‘𝐺) → (𝑦𝐻𝐴) = ((GId‘𝐺)𝐻𝐴)) |
| 13 | 12 | rspceeqv 3645 |
. . . . . . . 8
⊢
(((GId‘𝐺)
∈ 𝑋 ∧
(GId‘𝐺) =
((GId‘𝐺)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)) |
| 14 | 8, 11, 13 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)) |
| 15 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑥 = (GId‘𝐺) → (𝑥 = (𝑦𝐻𝐴) ↔ (GId‘𝐺) = (𝑦𝐻𝐴))) |
| 16 | 15 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑥 = (GId‘𝐺) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))) |
| 17 | 16 | elrab 3692 |
. . . . . . 7
⊢
((GId‘𝐺)
∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((GId‘𝐺) ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))) |
| 18 | 8, 14, 17 | sylanbrc 583 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 19 | | eqeq1 2741 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑦𝐻𝐴))) |
| 20 | 19 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑢 = (𝑦𝐻𝐴))) |
| 21 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑟 → (𝑦𝐻𝐴) = (𝑟𝐻𝐴)) |
| 22 | 21 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (𝑢 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑟𝐻𝐴))) |
| 23 | 22 | cbvrexvw 3238 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝑋 𝑢 = (𝑦𝐻𝐴) ↔ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴)) |
| 24 | 20, 23 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴))) |
| 25 | 24 | elrab 3692 |
. . . . . . . 8
⊢ (𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑢 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴))) |
| 26 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑣 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑦𝐻𝐴))) |
| 27 | 26 | rexbidv 3179 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑣 = (𝑦𝐻𝐴))) |
| 28 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑠 → (𝑦𝐻𝐴) = (𝑠𝐻𝐴)) |
| 29 | 28 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑠 → (𝑣 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑠𝐻𝐴))) |
| 30 | 29 | cbvrexvw 3238 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦 ∈
𝑋 𝑣 = (𝑦𝐻𝐴) ↔ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴)) |
| 31 | 27, 30 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴))) |
| 32 | 31 | elrab 3692 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑣 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴))) |
| 33 | 4, 9, 5 | rngodir 37912 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))) |
| 34 | 33 | 3exp2 1355 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ RingOps → (𝑟 ∈ 𝑋 → (𝑠 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))))) |
| 35 | 34 | imp42 426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))) |
| 36 | 4, 5 | rngogcl 37919 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐺𝑠) ∈ 𝑋) |
| 37 | 36 | 3expib 1123 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∈ RingOps → ((𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐺𝑠) ∈ 𝑋)) |
| 38 | 37 | imdistani 568 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋)) |
| 39 | 4, 9, 5 | rngocl 37908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋) |
| 40 | 39 | 3expa 1119 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋) |
| 41 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴) |
| 42 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = (𝑟𝐺𝑠) → (𝑦𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)) |
| 43 | 42 | rspceeqv 3645 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑟𝐺𝑠) ∈ 𝑋 ∧ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)) |
| 44 | 41, 43 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑟𝐺𝑠) ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)) |
| 45 | 44 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)) |
| 46 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))) |
| 47 | 46 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))) |
| 48 | 47 | elrab 3692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))) |
| 49 | 40, 45, 48 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 50 | 38, 49 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 51 | 35, 50 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 52 | 51 | an32s 652 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 53 | 52 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ 𝑠 ∈ 𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 54 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))) |
| 55 | 54 | eleq1d 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑠𝐻𝐴) → (((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 56 | 53, 55 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ 𝑠 ∈ 𝑋) → (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 57 | 56 | rexlimdva 3155 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 58 | 57 | adantld 490 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → ((𝑣 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴)) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 59 | 32, 58 | biimtrid 242 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 60 | 59 | ralrimiv 3145 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → ∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 61 | 4, 9, 5 | rngoass 37913 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))) |
| 62 | 61 | 3exp2 1355 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ RingOps → (𝑤 ∈ 𝑋 → (𝑟 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))))) |
| 63 | 62 | imp42 426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))) |
| 64 | 63 | an32s 652 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))) |
| 65 | 4, 9, 5 | rngocl 37908 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ RingOps ∧ 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋) → (𝑤𝐻𝑟) ∈ 𝑋) |
| 66 | 65 | 3expib 1123 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ RingOps → ((𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋) → (𝑤𝐻𝑟) ∈ 𝑋)) |
| 67 | 66 | imdistani 568 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → (𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋)) |
| 68 | 4, 9, 5 | rngocl 37908 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋) |
| 69 | 68 | 3expa 1119 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋) |
| 70 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴) |
| 71 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑤𝐻𝑟) → (𝑦𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)) |
| 72 | 71 | rspceeqv 3645 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤𝐻𝑟) ∈ 𝑋 ∧ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)) |
| 73 | 70, 72 | mpan2 691 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤𝐻𝑟) ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)) |
| 74 | 73 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)) |
| 75 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))) |
| 76 | 75 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))) |
| 77 | 76 | elrab 3692 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))) |
| 78 | 69, 74, 77 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 79 | 67, 78 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 80 | 79 | an32s 652 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 81 | 64, 80 | eqeltrrd 2842 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 82 | 81 | anass1rs 655 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 83 | 82 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 84 | 60, 83 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 85 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑟𝐻𝐴) → (𝑢𝐺𝑣) = ((𝑟𝐻𝐴)𝐺𝑣)) |
| 86 | 85 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑟𝐻𝐴) → ((𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 87 | 86 | ralbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 88 | | oveq2 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑟𝐻𝐴) → (𝑤𝐻𝑢) = (𝑤𝐻(𝑟𝐻𝐴))) |
| 89 | 88 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑟𝐻𝐴) → ((𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 90 | 89 | ralbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑟𝐻𝐴) → (∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 91 | 87, 90 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑟𝐻𝐴) → ((∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) ↔ (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
| 92 | 84, 91 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
| 93 | 92 | rexlimdva 3155 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
| 94 | 93 | adantld 490 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑢 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴)) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
| 95 | 25, 94 | biimtrid 242 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
| 96 | 95 | ralrimiv 3145 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
| 97 | 3, 18, 96 | 3jca 1129 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
| 98 | 1, 97 | sylan 580 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
| 99 | 4, 9, 5, 6 | isidlc 38022 |
. . . . 5
⊢ (𝑅 ∈ CRingOps → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})))) |
| 100 | 99 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})))) |
| 101 | 98, 100 | mpbird 257 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅)) |
| 102 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 103 | 4 | rneqi 5948 |
. . . . . . . . . 10
⊢ ran 𝐺 = ran (1st
‘𝑅) |
| 104 | 5, 103 | eqtri 2765 |
. . . . . . . . 9
⊢ 𝑋 = ran (1st
‘𝑅) |
| 105 | | eqid 2737 |
. . . . . . . . 9
⊢
(GId‘𝐻) =
(GId‘𝐻) |
| 106 | 104, 9, 105 | rngo1cl 37946 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps →
(GId‘𝐻) ∈ 𝑋) |
| 107 | 106 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐻) ∈ 𝑋) |
| 108 | 9, 104, 105 | rngolidm 37944 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐻)𝐻𝐴) = 𝐴) |
| 109 | 108 | eqcomd 2743 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 = ((GId‘𝐻)𝐻𝐴)) |
| 110 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑦 = (GId‘𝐻) → (𝑦𝐻𝐴) = ((GId‘𝐻)𝐻𝐴)) |
| 111 | 110 | rspceeqv 3645 |
. . . . . . 7
⊢
(((GId‘𝐻)
∈ 𝑋 ∧ 𝐴 = ((GId‘𝐻)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴)) |
| 112 | 107, 109,
111 | syl2anc 584 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴)) |
| 113 | 1, 112 | sylan 580 |
. . . . 5
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴)) |
| 114 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝐴 = (𝑦𝐻𝐴))) |
| 115 | 114 | rexbidv 3179 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴))) |
| 116 | 115 | elrab 3692 |
. . . . 5
⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝐴 ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴))) |
| 117 | 102, 113,
116 | sylanbrc 583 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 118 | 117 | snssd 4809 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
| 119 | | snssg 4783 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑗 ↔ {𝐴} ⊆ 𝑗)) |
| 120 | 119 | biimpar 477 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ {𝐴} ⊆ 𝑗) → 𝐴 ∈ 𝑗) |
| 121 | 4, 9, 5 | idllmulcl 38027 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝑗 ∧ 𝑦 ∈ 𝑋)) → (𝑦𝐻𝐴) ∈ 𝑗) |
| 122 | 121 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝐴) ∈ 𝑗) |
| 123 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦𝐻𝐴) → (𝑥 ∈ 𝑗 ↔ (𝑦𝐻𝐴) ∈ 𝑗)) |
| 124 | 122, 123 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) ∧ 𝑦 ∈ 𝑋) → (𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
| 125 | 124 | rexlimdva 3155 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
| 126 | 125 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
| 127 | 126 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) → ∀𝑥 ∈ 𝑋 (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
| 128 | | rabss 4072 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗 ↔ ∀𝑥 ∈ 𝑋 (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
| 129 | 127, 128 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗) |
| 130 | 129 | ex 412 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝐴 ∈ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
| 131 | 120, 130 | syl5 34 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → ((𝐴 ∈ 𝑋 ∧ {𝐴} ⊆ 𝑗) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
| 132 | 131 | expdimp 452 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑋) → ({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
| 133 | 132 | an32s 652 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑗 ∈ (Idl‘𝑅)) → ({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
| 134 | 133 | ralrimiva 3146 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
| 135 | 1, 134 | sylan 580 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
| 136 | 101, 118,
135 | 3jca 1129 |
. 2
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))) |
| 137 | | snssi 4808 |
. . 3
⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) |
| 138 | 4, 5 | igenval2 38073 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ {𝐴} ⊆ 𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)))) |
| 139 | 1, 137, 138 | syl2an 596 |
. 2
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)))) |
| 140 | 136, 139 | mpbird 257 |
1
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |