Step | Hyp | Ref
| Expression |
1 | | crngorngo 36085 |
. . . . 5
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈
RingOps) |
2 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 |
3 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋) |
4 | | prnc.1 |
. . . . . . . . 9
⊢ 𝐺 = (1st ‘𝑅) |
5 | | prnc.3 |
. . . . . . . . 9
⊢ 𝑋 = ran 𝐺 |
6 | | eqid 2738 |
. . . . . . . . 9
⊢
(GId‘𝐺) =
(GId‘𝐺) |
7 | 4, 5, 6 | rngo0cl 36004 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps →
(GId‘𝐺) ∈ 𝑋) |
8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐺) ∈ 𝑋) |
9 | | prnc.2 |
. . . . . . . . . 10
⊢ 𝐻 = (2nd ‘𝑅) |
10 | 6, 5, 4, 9 | rngolz 36007 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺)) |
11 | 10 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴)) |
12 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = (GId‘𝐺) → (𝑦𝐻𝐴) = ((GId‘𝐺)𝐻𝐴)) |
13 | 12 | rspceeqv 3567 |
. . . . . . . 8
⊢
(((GId‘𝐺)
∈ 𝑋 ∧
(GId‘𝐺) =
((GId‘𝐺)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)) |
14 | 8, 11, 13 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)) |
15 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = (GId‘𝐺) → (𝑥 = (𝑦𝐻𝐴) ↔ (GId‘𝐺) = (𝑦𝐻𝐴))) |
16 | 15 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑥 = (GId‘𝐺) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))) |
17 | 16 | elrab 3617 |
. . . . . . 7
⊢
((GId‘𝐺)
∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((GId‘𝐺) ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))) |
18 | 8, 14, 17 | sylanbrc 582 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
19 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑦𝐻𝐴))) |
20 | 19 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑢 = (𝑦𝐻𝐴))) |
21 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑟 → (𝑦𝐻𝐴) = (𝑟𝐻𝐴)) |
22 | 21 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (𝑢 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑟𝐻𝐴))) |
23 | 22 | cbvrexvw 3373 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝑋 𝑢 = (𝑦𝐻𝐴) ↔ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴)) |
24 | 20, 23 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴))) |
25 | 24 | elrab 3617 |
. . . . . . . 8
⊢ (𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑢 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴))) |
26 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑣 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑦𝐻𝐴))) |
27 | 26 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑣 = (𝑦𝐻𝐴))) |
28 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑠 → (𝑦𝐻𝐴) = (𝑠𝐻𝐴)) |
29 | 28 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑠 → (𝑣 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑠𝐻𝐴))) |
30 | 29 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦 ∈
𝑋 𝑣 = (𝑦𝐻𝐴) ↔ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴)) |
31 | 27, 30 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴))) |
32 | 31 | elrab 3617 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑣 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴))) |
33 | 4, 9, 5 | rngodir 35990 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))) |
34 | 33 | 3exp2 1352 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ RingOps → (𝑟 ∈ 𝑋 → (𝑠 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))))) |
35 | 34 | imp42 426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))) |
36 | 4, 5 | rngogcl 35997 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐺𝑠) ∈ 𝑋) |
37 | 36 | 3expib 1120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∈ RingOps → ((𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐺𝑠) ∈ 𝑋)) |
38 | 37 | imdistani 568 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋)) |
39 | 4, 9, 5 | rngocl 35986 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋) |
40 | 39 | 3expa 1116 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋) |
41 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴) |
42 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = (𝑟𝐺𝑠) → (𝑦𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)) |
43 | 42 | rspceeqv 3567 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑟𝐺𝑠) ∈ 𝑋 ∧ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)) |
44 | 41, 43 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑟𝐺𝑠) ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)) |
45 | 44 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)) |
46 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))) |
47 | 46 | rexbidv 3225 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))) |
48 | 47 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))) |
49 | 40, 45, 48 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
50 | 38, 49 | sylan 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
51 | 35, 50 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ RingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
52 | 51 | an32s 648 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
53 | 52 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ 𝑠 ∈ 𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
54 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))) |
55 | 54 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑠𝐻𝐴) → (((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
56 | 53, 55 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ 𝑠 ∈ 𝑋) → (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
57 | 56 | rexlimdva 3212 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
58 | 57 | adantld 490 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → ((𝑣 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑣 = (𝑠𝐻𝐴)) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
59 | 32, 58 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
60 | 59 | ralrimiv 3106 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → ∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
61 | 4, 9, 5 | rngoass 35991 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))) |
62 | 61 | 3exp2 1352 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ RingOps → (𝑤 ∈ 𝑋 → (𝑟 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))))) |
63 | 62 | imp42 426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))) |
64 | 63 | an32s 648 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))) |
65 | 4, 9, 5 | rngocl 35986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ RingOps ∧ 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋) → (𝑤𝐻𝑟) ∈ 𝑋) |
66 | 65 | 3expib 1120 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ RingOps → ((𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋) → (𝑤𝐻𝑟) ∈ 𝑋)) |
67 | 66 | imdistani 568 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → (𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋)) |
68 | 4, 9, 5 | rngocl 35986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋) |
69 | 68 | 3expa 1116 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋) |
70 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴) |
71 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑤𝐻𝑟) → (𝑦𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)) |
72 | 71 | rspceeqv 3567 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤𝐻𝑟) ∈ 𝑋 ∧ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)) |
73 | 70, 72 | mpan2 687 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤𝐻𝑟) ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)) |
74 | 73 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)) |
75 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))) |
76 | 75 | rexbidv 3225 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))) |
77 | 76 | elrab 3617 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))) |
78 | 69, 74, 77 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
79 | 67, 78 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ RingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) ∧ 𝐴 ∈ 𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
80 | 79 | an32s 648 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
81 | 64, 80 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ (𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
82 | 81 | anass1rs 651 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
83 | 82 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
84 | 60, 83 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
85 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑟𝐻𝐴) → (𝑢𝐺𝑣) = ((𝑟𝐻𝐴)𝐺𝑣)) |
86 | 85 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑟𝐻𝐴) → ((𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
87 | 86 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
88 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑟𝐻𝐴) → (𝑤𝐻𝑢) = (𝑤𝐻(𝑟𝐻𝐴))) |
89 | 88 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑟𝐻𝐴) → ((𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
90 | 89 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑟𝐻𝐴) → (∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
91 | 87, 90 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑟𝐻𝐴) → ((∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) ↔ (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
92 | 84, 91 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) → (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
93 | 92 | rexlimdva 3212 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
94 | 93 | adantld 490 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑢 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑢 = (𝑟𝐻𝐴)) → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
95 | 25, 94 | syl5bi 241 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} → (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
96 | 95 | ralrimiv 3106 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})) |
97 | 3, 18, 96 | 3jca 1126 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
98 | 1, 97 | sylan 579 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}))) |
99 | 4, 9, 5, 6 | isidlc 36100 |
. . . . 5
⊢ (𝑅 ∈ CRingOps → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})))) |
100 | 99 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤 ∈ 𝑋 (𝑤𝐻𝑢) ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)})))) |
101 | 98, 100 | mpbird 256 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅)) |
102 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
103 | 4 | rneqi 5835 |
. . . . . . . . . 10
⊢ ran 𝐺 = ran (1st
‘𝑅) |
104 | 5, 103 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝑋 = ran (1st
‘𝑅) |
105 | | eqid 2738 |
. . . . . . . . 9
⊢
(GId‘𝐻) =
(GId‘𝐻) |
106 | 104, 9, 105 | rngo1cl 36024 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps →
(GId‘𝐻) ∈ 𝑋) |
107 | 106 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (GId‘𝐻) ∈ 𝑋) |
108 | 9, 104, 105 | rngolidm 36022 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐻)𝐻𝐴) = 𝐴) |
109 | 108 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 = ((GId‘𝐻)𝐻𝐴)) |
110 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑦 = (GId‘𝐻) → (𝑦𝐻𝐴) = ((GId‘𝐻)𝐻𝐴)) |
111 | 110 | rspceeqv 3567 |
. . . . . . 7
⊢
(((GId‘𝐻)
∈ 𝑋 ∧ 𝐴 = ((GId‘𝐻)𝐻𝐴)) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴)) |
112 | 107, 109,
111 | syl2anc 583 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴)) |
113 | 1, 112 | sylan 579 |
. . . . 5
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴)) |
114 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝐴 = (𝑦𝐻𝐴))) |
115 | 114 | rexbidv 3225 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴))) |
116 | 115 | elrab 3617 |
. . . . 5
⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝐴 ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦𝐻𝐴))) |
117 | 102, 113,
116 | sylanbrc 582 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
118 | 117 | snssd 4739 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |
119 | | snssg 4715 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑗 ↔ {𝐴} ⊆ 𝑗)) |
120 | 119 | biimpar 477 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ {𝐴} ⊆ 𝑗) → 𝐴 ∈ 𝑗) |
121 | 4, 9, 5 | idllmulcl 36105 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝑗 ∧ 𝑦 ∈ 𝑋)) → (𝑦𝐻𝐴) ∈ 𝑗) |
122 | 121 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝐴) ∈ 𝑗) |
123 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦𝐻𝐴) → (𝑥 ∈ 𝑗 ↔ (𝑦𝐻𝐴) ∈ 𝑗)) |
124 | 122, 123 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) ∧ 𝑦 ∈ 𝑋) → (𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
125 | 124 | rexlimdva 3212 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
126 | 125 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
127 | 126 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) → ∀𝑥 ∈ 𝑋 (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
128 | | rabss 4001 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗 ↔ ∀𝑥 ∈ 𝑋 (∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥 ∈ 𝑗)) |
129 | 127, 128 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑗) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗) |
130 | 129 | ex 412 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝐴 ∈ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
131 | 120, 130 | syl5 34 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → ((𝐴 ∈ 𝑋 ∧ {𝐴} ⊆ 𝑗) → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
132 | 131 | expdimp 452 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝑋) → ({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
133 | 132 | an32s 648 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑗 ∈ (Idl‘𝑅)) → ({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
134 | 133 | ralrimiva 3107 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
135 | 1, 134 | sylan 579 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)) |
136 | 101, 118,
135 | 3jca 1126 |
. 2
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))) |
137 | | snssi 4738 |
. . 3
⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) |
138 | 4, 5 | igenval2 36151 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ {𝐴} ⊆ 𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)))) |
139 | 1, 137, 138 | syl2an 595 |
. 2
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)))) |
140 | 136, 139 | mpbird 256 |
1
⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) |