Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prnc Structured version   Visualization version   GIF version

Theorem prnc 38115
Description: A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
prnc.1 𝐺 = (1st𝑅)
prnc.2 𝐻 = (2nd𝑅)
prnc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
prnc ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦

Proof of Theorem prnc
Dummy variables 𝑗 𝑢 𝑣 𝑤 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngorngo 38048 . . . . 5 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 ssrab2 4027 . . . . . . 7 {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋
32a1i 11 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋)
4 prnc.1 . . . . . . . . 9 𝐺 = (1st𝑅)
5 prnc.3 . . . . . . . . 9 𝑋 = ran 𝐺
6 eqid 2731 . . . . . . . . 9 (GId‘𝐺) = (GId‘𝐺)
74, 5, 6rngo0cl 37967 . . . . . . . 8 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
87adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) ∈ 𝑋)
9 prnc.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
106, 5, 4, 9rngolz 37970 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺))
1110eqcomd 2737 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴))
12 oveq1 7353 . . . . . . . . 9 (𝑦 = (GId‘𝐺) → (𝑦𝐻𝐴) = ((GId‘𝐺)𝐻𝐴))
1312rspceeqv 3595 . . . . . . . 8 (((GId‘𝐺) ∈ 𝑋 ∧ (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴)) → ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))
148, 11, 13syl2anc 584 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))
15 eqeq1 2735 . . . . . . . . 9 (𝑥 = (GId‘𝐺) → (𝑥 = (𝑦𝐻𝐴) ↔ (GId‘𝐺) = (𝑦𝐻𝐴)))
1615rexbidv 3156 . . . . . . . 8 (𝑥 = (GId‘𝐺) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)))
1716elrab 3642 . . . . . . 7 ((GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((GId‘𝐺) ∈ 𝑋 ∧ ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)))
188, 14, 17sylanbrc 583 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
19 eqeq1 2735 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑦𝐻𝐴)))
2019rexbidv 3156 . . . . . . . . . 10 (𝑥 = 𝑢 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝑢 = (𝑦𝐻𝐴)))
21 oveq1 7353 . . . . . . . . . . . 12 (𝑦 = 𝑟 → (𝑦𝐻𝐴) = (𝑟𝐻𝐴))
2221eqeq2d 2742 . . . . . . . . . . 11 (𝑦 = 𝑟 → (𝑢 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑟𝐻𝐴)))
2322cbvrexvw 3211 . . . . . . . . . 10 (∃𝑦𝑋 𝑢 = (𝑦𝐻𝐴) ↔ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴))
2420, 23bitrdi 287 . . . . . . . . 9 (𝑥 = 𝑢 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)))
2524elrab 3642 . . . . . . . 8 (𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑢𝑋 ∧ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)))
26 eqeq1 2735 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑦𝐻𝐴)))
2726rexbidv 3156 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝑣 = (𝑦𝐻𝐴)))
28 oveq1 7353 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑠 → (𝑦𝐻𝐴) = (𝑠𝐻𝐴))
2928eqeq2d 2742 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑣 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑠𝐻𝐴)))
3029cbvrexvw 3211 . . . . . . . . . . . . . . . 16 (∃𝑦𝑋 𝑣 = (𝑦𝐻𝐴) ↔ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴))
3127, 30bitrdi 287 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)))
3231elrab 3642 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑣𝑋 ∧ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)))
334, 9, 5rngodir 37953 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋𝐴𝑋)) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
34333exp2 1355 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑟𝑋 → (𝑠𝑋 → (𝐴𝑋 → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))))))
3534imp42 426 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
364, 5rngogcl 37960 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐺𝑠) ∈ 𝑋)
37363expib 1122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ RingOps → ((𝑟𝑋𝑠𝑋) → (𝑟𝐺𝑠) ∈ 𝑋))
3837imdistani 568 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) → (𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋))
394, 9, 5rngocl 37949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋)
40393expa 1118 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋)
41 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)
42 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑟𝐺𝑠) → (𝑦𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴))
4342rspceeqv 3595 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑟𝐺𝑠) ∈ 𝑋 ∧ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)) → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
4441, 43mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟𝐺𝑠) ∈ 𝑋 → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
4544ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
46 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
4746rexbidv 3156 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
4847elrab 3642 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
4940, 45, 48sylanbrc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5038, 49sylan 580 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5135, 50eqeltrrd 2832 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5251an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5352anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑠𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
54 oveq2 7354 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
5554eleq1d 2816 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑠𝐻𝐴) → (((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5653, 55syl5ibrcom 247 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑠𝑋) → (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5756rexlimdva 3133 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5857adantld 490 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ((𝑣𝑋 ∧ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5932, 58biimtrid 242 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
6059ralrimiv 3123 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
614, 9, 5rngoass 37954 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋𝐴𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
62613exp2 1355 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ RingOps → (𝑤𝑋 → (𝑟𝑋 → (𝐴𝑋 → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))))))
6362imp42 426 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
6463an32s 652 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
654, 9, 5rngocl 37949 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ 𝑤𝑋𝑟𝑋) → (𝑤𝐻𝑟) ∈ 𝑋)
66653expib 1122 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ RingOps → ((𝑤𝑋𝑟𝑋) → (𝑤𝐻𝑟) ∈ 𝑋))
6766imdistani 568 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) → (𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋))
684, 9, 5rngocl 37949 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋)
69683expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋)
70 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)
71 oveq1 7353 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤𝐻𝑟) → (𝑦𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴))
7271rspceeqv 3595 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝐻𝑟) ∈ 𝑋 ∧ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)) → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
7370, 72mpan2 691 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐻𝑟) ∈ 𝑋 → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
7473ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
75 eqeq1 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
7675rexbidv 3156 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
7776elrab 3642 . . . . . . . . . . . . . . . . . 18 (((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
7869, 74, 77sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
7967, 78sylan 580 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8079an32s 652 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8164, 80eqeltrrd 2832 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8281anass1rs 655 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑤𝑋) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8382ralrimiva 3124 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8460, 83jca 511 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
85 oveq1 7353 . . . . . . . . . . . . . 14 (𝑢 = (𝑟𝐻𝐴) → (𝑢𝐺𝑣) = ((𝑟𝐻𝐴)𝐺𝑣))
8685eleq1d 2816 . . . . . . . . . . . . 13 (𝑢 = (𝑟𝐻𝐴) → ((𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
8786ralbidv 3155 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
88 oveq2 7354 . . . . . . . . . . . . . 14 (𝑢 = (𝑟𝐻𝐴) → (𝑤𝐻𝑢) = (𝑤𝐻(𝑟𝐻𝐴)))
8988eleq1d 2816 . . . . . . . . . . . . 13 (𝑢 = (𝑟𝐻𝐴) → ((𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
9089ralbidv 3155 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐻𝐴) → (∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
9187, 90anbi12d 632 . . . . . . . . . . 11 (𝑢 = (𝑟𝐻𝐴) → ((∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}) ↔ (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9284, 91syl5ibrcom 247 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9392rexlimdva 3133 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9493adantld 490 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑢𝑋 ∧ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9525, 94biimtrid 242 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9695ralrimiv 3123 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
973, 18, 963jca 1128 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
981, 97sylan 580 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
994, 9, 5, 6isidlc 38063 . . . . 5 (𝑅 ∈ CRingOps → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))))
10099adantr 480 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))))
10198, 100mpbird 257 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅))
102 simpr 484 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → 𝐴𝑋)
1034rneqi 5876 . . . . . . . . . 10 ran 𝐺 = ran (1st𝑅)
1045, 103eqtri 2754 . . . . . . . . 9 𝑋 = ran (1st𝑅)
105 eqid 2731 . . . . . . . . 9 (GId‘𝐻) = (GId‘𝐻)
106104, 9, 105rngo1cl 37987 . . . . . . . 8 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
107106adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐻) ∈ 𝑋)
1089, 104, 105rngolidm 37985 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐻)𝐻𝐴) = 𝐴)
109108eqcomd 2737 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴 = ((GId‘𝐻)𝐻𝐴))
110 oveq1 7353 . . . . . . . 8 (𝑦 = (GId‘𝐻) → (𝑦𝐻𝐴) = ((GId‘𝐻)𝐻𝐴))
111110rspceeqv 3595 . . . . . . 7 (((GId‘𝐻) ∈ 𝑋𝐴 = ((GId‘𝐻)𝐻𝐴)) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
112107, 109, 111syl2anc 584 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
1131, 112sylan 580 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
114 eqeq1 2735 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝐴 = (𝑦𝐻𝐴)))
115114rexbidv 3156 . . . . . 6 (𝑥 = 𝐴 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴)))
116115elrab 3642 . . . . 5 (𝐴 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝐴𝑋 ∧ ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴)))
117102, 113, 116sylanbrc 583 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → 𝐴 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
118117snssd 4758 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
119 snssg 4733 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑗 ↔ {𝐴} ⊆ 𝑗))
120119biimpar 477 . . . . . . . 8 ((𝐴𝑋 ∧ {𝐴} ⊆ 𝑗) → 𝐴𝑗)
1214, 9, 5idllmulcl 38068 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ (𝐴𝑗𝑦𝑋)) → (𝑦𝐻𝐴) ∈ 𝑗)
122121anassrs 467 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑦𝑋) → (𝑦𝐻𝐴) ∈ 𝑗)
123 eleq1 2819 . . . . . . . . . . . . . 14 (𝑥 = (𝑦𝐻𝐴) → (𝑥𝑗 ↔ (𝑦𝐻𝐴) ∈ 𝑗))
124122, 123syl5ibrcom 247 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑦𝑋) → (𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
125124rexlimdva 3133 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
126125adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑥𝑋) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
127126ralrimiva 3124 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → ∀𝑥𝑋 (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
128 rabss 4017 . . . . . . . . . 10 ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗 ↔ ∀𝑥𝑋 (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
129127, 128sylibr 234 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)
130129ex 412 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝐴𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
131120, 130syl5 34 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → ((𝐴𝑋 ∧ {𝐴} ⊆ 𝑗) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
132131expdimp 452 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑋) → ({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
133132an32s 652 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑗 ∈ (Idl‘𝑅)) → ({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
134133ralrimiva 3124 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
1351, 134sylan 580 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
136101, 118, 1353jca 1128 . 2 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)))
137 snssi 4757 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
1384, 5igenval2 38114 . . 3 ((𝑅 ∈ RingOps ∧ {𝐴} ⊆ 𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))))
1391, 137, 138syl2an 596 . 2 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))))
140136, 139mpbird 257 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3897  {csn 4573  ran crn 5615  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  GIdcgi 30470  RingOpscrngo 37942  CRingOpsccring 38041  Idlcidl 38055   IdlGen cigen 38107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-ass 37891  df-exid 37893  df-mgmOLD 37897  df-sgrOLD 37909  df-mndo 37915  df-rngo 37943  df-com2 38038  df-crngo 38042  df-idl 38058  df-igen 38108
This theorem is referenced by:  isfldidl  38116  ispridlc  38118
  Copyright terms: Public domain W3C validator