MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscatd Structured version   Visualization version   GIF version

Theorem iscatd 17634
Description: Properties that determine a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
iscatd.b (𝜑𝐵 = (Base‘𝐶))
iscatd.h (𝜑𝐻 = (Hom ‘𝐶))
iscatd.o (𝜑· = (comp‘𝐶))
iscatd.c (𝜑𝐶𝑉)
iscatd.1 ((𝜑𝑥𝐵) → 1 ∈ (𝑥𝐻𝑥))
iscatd.2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓)
iscatd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)
iscatd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
iscatd.5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
Assertion
Ref Expression
iscatd (𝜑𝐶 ∈ Cat)
Distinct variable groups:   𝑓,𝑔,𝑦, 1   𝑓,𝑘,𝑤,𝑥,𝑧,𝐵,𝑔,𝑦   𝜑,𝑓,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧   · ,𝑔   𝐶,𝑓,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑘,𝑤
Allowed substitution hints:   · (𝑥,𝑦,𝑧,𝑤,𝑓,𝑘)   1 (𝑥,𝑧,𝑤,𝑘)   𝐻(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,𝑘)

Proof of Theorem iscatd
StepHypRef Expression
1 iscatd.1 . . . . . 6 ((𝜑𝑥𝐵) → 1 ∈ (𝑥𝐻𝑥))
2 iscatd.2 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓)
323exp2 1355 . . . . . . . . . 10 (𝜑 → (𝑥𝐵 → (𝑦𝐵 → (𝑓 ∈ (𝑦𝐻𝑥) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))))
43imp31 417 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑓 ∈ (𝑦𝐻𝑥) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
54ralrimiv 3124 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑓 ∈ (𝑦𝐻𝑥)( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓)
6 iscatd.3 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)
763exp2 1355 . . . . . . . . . 10 (𝜑 → (𝑥𝐵 → (𝑦𝐵 → (𝑓 ∈ (𝑥𝐻𝑦) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))))
87imp31 417 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))
98ralrimiv 3124 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)
105, 9jca 511 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (∀𝑓 ∈ (𝑦𝐻𝑥)( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))
1110ralrimiva 3125 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))
12 oveq1 7394 . . . . . . . . . . 11 (𝑔 = 1 → (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓))
1312eqeq1d 2731 . . . . . . . . . 10 (𝑔 = 1 → ((𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
1413ralbidv 3156 . . . . . . . . 9 (𝑔 = 1 → (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑥)( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
15 oveq2 7395 . . . . . . . . . . 11 (𝑔 = 1 → (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ))
1615eqeq1d 2731 . . . . . . . . . 10 (𝑔 = 1 → ((𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))
1716ralbidv 3156 . . . . . . . . 9 (𝑔 = 1 → (∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))
1814, 17anbi12d 632 . . . . . . . 8 (𝑔 = 1 → ((∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑥)( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)))
1918ralbidv 3156 . . . . . . 7 (𝑔 = 1 → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)))
2019rspcev 3588 . . . . . 6 (( 1 ∈ (𝑥𝐻𝑥) ∧ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)) → ∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
211, 11, 20syl2anc 584 . . . . 5 ((𝜑𝑥𝐵) → ∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
22 iscatd.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
23223expia 1121 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)))
24233exp2 1355 . . . . . . . . 9 (𝜑 → (𝑥𝐵 → (𝑦𝐵 → (𝑧𝐵 → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))))))
2524imp43 427 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)))
26 iscatd.5 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
27263expa 1118 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵))) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
28273exp2 1355 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵))) → (𝑓 ∈ (𝑥𝐻𝑦) → (𝑔 ∈ (𝑦𝐻𝑧) → (𝑘 ∈ (𝑧𝐻𝑤) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
2928imp32 418 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵))) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑘 ∈ (𝑧𝐻𝑤) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))
3029ralrimiv 3124 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵))) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
3130ex 412 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))
3231expr 456 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧𝐵𝑤𝐵) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
3332expd 415 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑧𝐵 → (𝑤𝐵 → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
3433expr 456 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑦𝐵 → (𝑧𝐵 → (𝑤𝐵 → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))))
3534imp42 426 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑤𝐵) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))
3635ralrimdva 3133 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))
3725, 36jcad 512 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → ((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
3837ralrimivv 3178 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))
3938ralrimivva 3180 . . . . 5 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))
4021, 39jca 511 . . . 4 ((𝜑𝑥𝐵) → (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
4140ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
42 iscatd.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
43 iscatd.h . . . . . . 7 (𝜑𝐻 = (Hom ‘𝐶))
4443oveqd 7404 . . . . . 6 (𝜑 → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥))
4543oveqd 7404 . . . . . . . . 9 (𝜑 → (𝑦𝐻𝑥) = (𝑦(Hom ‘𝐶)𝑥))
46 iscatd.o . . . . . . . . . . . 12 (𝜑· = (comp‘𝐶))
4746oveqd 7404 . . . . . . . . . . 11 (𝜑 → (⟨𝑦, 𝑥· 𝑥) = (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥))
4847oveqd 7404 . . . . . . . . . 10 (𝜑 → (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓))
4948eqeq1d 2731 . . . . . . . . 9 (𝜑 → ((𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
5045, 49raleqbidv 3319 . . . . . . . 8 (𝜑 → (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
5143oveqd 7404 . . . . . . . . 9 (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
5246oveqd 7404 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑥· 𝑦) = (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦))
5352oveqd 7404 . . . . . . . . . 10 (𝜑 → (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔))
5453eqeq1d 2731 . . . . . . . . 9 (𝜑 → ((𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
5551, 54raleqbidv 3319 . . . . . . . 8 (𝜑 → (∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
5650, 55anbi12d 632 . . . . . . 7 (𝜑 → ((∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
5742, 56raleqbidv 3319 . . . . . 6 (𝜑 → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
5844, 57rexeqbidv 3320 . . . . 5 (𝜑 → (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ↔ ∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
5943oveqd 7404 . . . . . . . . 9 (𝜑 → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
6046oveqd 7404 . . . . . . . . . . . 12 (𝜑 → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
6160oveqd 7404 . . . . . . . . . . 11 (𝜑 → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
6243oveqd 7404 . . . . . . . . . . 11 (𝜑 → (𝑥𝐻𝑧) = (𝑥(Hom ‘𝐶)𝑧))
6361, 62eleq12d 2822 . . . . . . . . . 10 (𝜑 → ((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
6443oveqd 7404 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐶)𝑤))
6546oveqd 7404 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤))
6646oveqd 7404 . . . . . . . . . . . . . . 15 (𝜑 → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤))
6766oveqd 7404 . . . . . . . . . . . . . 14 (𝜑 → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
68 eqidd 2730 . . . . . . . . . . . . . 14 (𝜑𝑓 = 𝑓)
6965, 67, 68oveq123d 7408 . . . . . . . . . . . . 13 (𝜑 → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓))
7046oveqd 7404 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤))
71 eqidd 2730 . . . . . . . . . . . . . 14 (𝜑𝑘 = 𝑘)
7270, 71, 61oveq123d 7408 . . . . . . . . . . . . 13 (𝜑 → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
7369, 72eqeq12d 2745 . . . . . . . . . . . 12 (𝜑 → (((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
7464, 73raleqbidv 3319 . . . . . . . . . . 11 (𝜑 → (∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
7542, 74raleqbidv 3319 . . . . . . . . . 10 (𝜑 → (∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
7663, 75anbi12d 632 . . . . . . . . 9 (𝜑 → (((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
7759, 76raleqbidv 3319 . . . . . . . 8 (𝜑 → (∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
7851, 77raleqbidv 3319 . . . . . . 7 (𝜑 → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
7942, 78raleqbidv 3319 . . . . . 6 (𝜑 → (∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
8042, 79raleqbidv 3319 . . . . 5 (𝜑 → (∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
8158, 80anbi12d 632 . . . 4 (𝜑 → ((∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
8242, 81raleqbidv 3319 . . 3 (𝜑 → (∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
8341, 82mpbid 232 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
84 iscatd.c . . 3 (𝜑𝐶𝑉)
85 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
86 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
87 eqid 2729 . . . 4 (comp‘𝐶) = (comp‘𝐶)
8885, 86, 87iscat 17633 . . 3 (𝐶𝑉 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
8984, 88syl 17 . 2 (𝜑 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
9083, 89mpbird 257 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cop 4595  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-cat 17629
This theorem is referenced by:  iscatd2  17642  0catg  17649
  Copyright terms: Public domain W3C validator