MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp43 Structured version   Visualization version   GIF version

Theorem imp43 427
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 421 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 406 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fundmen  8979  fiint  9253  fiintOLD  9254  ltexprlem6  10970  divgt0  12027  divge0  12028  le2sq2  14076  iscatd  17610  isfuncd  17803  islmodd  20748  lmodvsghm  20805  islssd  20817  basis2  22814  neindisj  22980  dvidlem  25792  spansneleq  31472  elspansn4  31475  adjmul  31994  kbass6  32023  mdsl0  32212  chirredlem1  32292  r1peuqusdeg1  35603  poimirlem29  37616  rngonegmn1r  37909  3dim1  39434  linepsubN  39719  pmapsub  39735  tgoldbach  47791
  Copyright terms: Public domain W3C validator