![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fundmen 9070 fiint 9364 fiintOLD 9365 ltexprlem6 11079 divgt0 12134 divge0 12135 le2sq2 14172 iscatd 17718 isfuncd 17916 islmodd 20881 lmodvsghm 20938 islssd 20951 basis2 22974 neindisj 23141 dvidlem 25965 spansneleq 31599 elspansn4 31602 adjmul 32121 kbass6 32150 mdsl0 32339 chirredlem1 32419 r1peuqusdeg1 35628 poimirlem29 37636 rngonegmn1r 37929 3dim1 39450 linepsubN 39735 pmapsub 39751 tgoldbach 47742 |
Copyright terms: Public domain | W3C validator |