| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fundmen 9045 fiint 9338 fiintOLD 9339 ltexprlem6 11055 divgt0 12110 divge0 12111 le2sq2 14153 iscatd 17685 isfuncd 17878 islmodd 20823 lmodvsghm 20880 islssd 20892 basis2 22889 neindisj 23055 dvidlem 25868 spansneleq 31551 elspansn4 31554 adjmul 32073 kbass6 32102 mdsl0 32291 chirredlem1 32371 r1peuqusdeg1 35665 poimirlem29 37673 rngonegmn1r 37966 3dim1 39486 linepsubN 39771 pmapsub 39787 tgoldbach 47831 |
| Copyright terms: Public domain | W3C validator |