| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fundmen 9002 fiint 9277 fiintOLD 9278 ltexprlem6 10994 divgt0 12051 divge0 12052 le2sq2 14100 iscatd 17634 isfuncd 17827 islmodd 20772 lmodvsghm 20829 islssd 20841 basis2 22838 neindisj 23004 dvidlem 25816 spansneleq 31499 elspansn4 31502 adjmul 32021 kbass6 32050 mdsl0 32239 chirredlem1 32319 r1peuqusdeg1 35630 poimirlem29 37643 rngonegmn1r 37936 3dim1 39461 linepsubN 39746 pmapsub 39762 tgoldbach 47818 |
| Copyright terms: Public domain | W3C validator |