MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp43 Structured version   Visualization version   GIF version

Theorem imp43 427
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 421 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 406 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fundmen  8953  fiint  9211  ltexprlem6  10932  divgt0  11990  divge0  11991  le2sq2  14042  iscatd  17579  isfuncd  17772  islmodd  20799  lmodvsghm  20856  islssd  20868  basis2  22866  neindisj  23032  dvidlem  25843  spansneleq  31550  elspansn4  31553  adjmul  32072  kbass6  32101  mdsl0  32290  chirredlem1  32370  r1peuqusdeg1  35687  poimirlem29  37699  rngonegmn1r  37992  3dim1  39576  linepsubN  39861  pmapsub  39877  tgoldbach  47927
  Copyright terms: Public domain W3C validator