| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fundmen 8979 fiint 9253 fiintOLD 9254 ltexprlem6 10970 divgt0 12027 divge0 12028 le2sq2 14076 iscatd 17610 isfuncd 17803 islmodd 20748 lmodvsghm 20805 islssd 20817 basis2 22814 neindisj 22980 dvidlem 25792 spansneleq 31472 elspansn4 31475 adjmul 31994 kbass6 32023 mdsl0 32212 chirredlem1 32292 r1peuqusdeg1 35603 poimirlem29 37616 rngonegmn1r 37909 3dim1 39434 linepsubN 39719 pmapsub 39735 tgoldbach 47791 |
| Copyright terms: Public domain | W3C validator |