MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp43 Structured version   Visualization version   GIF version

Theorem imp43 427
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 421 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 406 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fundmen  8956  fiint  9216  fiintOLD  9217  ltexprlem6  10935  divgt0  11993  divge0  11994  le2sq2  14042  iscatd  17579  isfuncd  17772  islmodd  20769  lmodvsghm  20826  islssd  20838  basis2  22836  neindisj  23002  dvidlem  25814  spansneleq  31514  elspansn4  31517  adjmul  32036  kbass6  32065  mdsl0  32254  chirredlem1  32334  r1peuqusdeg1  35616  poimirlem29  37629  rngonegmn1r  37922  3dim1  39446  linepsubN  39731  pmapsub  39747  tgoldbach  47801
  Copyright terms: Public domain W3C validator