Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 423 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 408 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: fundmen 8856 fiint 9135 ltexprlem6 10843 divgt0 11889 divge0 11890 le2sq2 13900 iscatd 17427 isfuncd 17625 islmodd 20174 lmodvsghm 20229 islssd 20242 basis2 22146 neindisj 22313 dvidlem 25124 spansneleq 29977 elspansn4 29980 adjmul 30499 kbass6 30528 mdsl0 30717 chirredlem1 30797 poimirlem29 35850 rngonegmn1r 36144 3dim1 37523 linepsubN 37808 pmapsub 37824 tgoldbach 45327 |
Copyright terms: Public domain | W3C validator |