| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fundmen 8956 fiint 9216 fiintOLD 9217 ltexprlem6 10935 divgt0 11993 divge0 11994 le2sq2 14042 iscatd 17579 isfuncd 17772 islmodd 20769 lmodvsghm 20826 islssd 20838 basis2 22836 neindisj 23002 dvidlem 25814 spansneleq 31514 elspansn4 31517 adjmul 32036 kbass6 32065 mdsl0 32254 chirredlem1 32334 r1peuqusdeg1 35616 poimirlem29 37629 rngonegmn1r 37922 3dim1 39446 linepsubN 39731 pmapsub 39747 tgoldbach 47801 |
| Copyright terms: Public domain | W3C validator |