![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fundmen 9096 fiint 9394 fiintOLD 9395 ltexprlem6 11110 divgt0 12163 divge0 12164 le2sq2 14185 iscatd 17731 isfuncd 17929 islmodd 20886 lmodvsghm 20943 islssd 20956 basis2 22979 neindisj 23146 dvidlem 25970 spansneleq 31602 elspansn4 31605 adjmul 32124 kbass6 32153 mdsl0 32342 chirredlem1 32422 r1peuqusdeg1 35611 poimirlem29 37609 rngonegmn1r 37902 3dim1 39424 linepsubN 39709 pmapsub 39725 tgoldbach 47691 |
Copyright terms: Public domain | W3C validator |