MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp43 Structured version   Visualization version   GIF version

Theorem imp43 429
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 423 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 408 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  fundmen  9031  fiint  9324  ltexprlem6  11036  divgt0  12082  divge0  12083  le2sq2  14100  iscatd  17617  isfuncd  17815  islmodd  20477  lmodvsghm  20533  islssd  20546  basis2  22454  neindisj  22621  dvidlem  25432  spansneleq  30823  elspansn4  30826  adjmul  31345  kbass6  31374  mdsl0  31563  chirredlem1  31643  poimirlem29  36517  rngonegmn1r  36810  3dim1  38338  linepsubN  38623  pmapsub  38639  tgoldbach  46485
  Copyright terms: Public domain W3C validator