| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fundmen 8979 fiint 9253 fiintOLD 9254 ltexprlem6 10970 divgt0 12027 divge0 12028 le2sq2 14076 iscatd 17614 isfuncd 17807 islmodd 20804 lmodvsghm 20861 islssd 20873 basis2 22871 neindisj 23037 dvidlem 25849 spansneleq 31549 elspansn4 31552 adjmul 32071 kbass6 32100 mdsl0 32289 chirredlem1 32369 r1peuqusdeg1 35623 poimirlem29 37636 rngonegmn1r 37929 3dim1 39454 linepsubN 39739 pmapsub 39755 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |