| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | imp4b 421 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fundmen 9005 fiint 9284 fiintOLD 9285 ltexprlem6 11001 divgt0 12058 divge0 12059 le2sq2 14107 iscatd 17641 isfuncd 17834 islmodd 20779 lmodvsghm 20836 islssd 20848 basis2 22845 neindisj 23011 dvidlem 25823 spansneleq 31506 elspansn4 31509 adjmul 32028 kbass6 32057 mdsl0 32246 chirredlem1 32326 r1peuqusdeg1 35637 poimirlem29 37650 rngonegmn1r 37943 3dim1 39468 linepsubN 39753 pmapsub 39769 tgoldbach 47822 |
| Copyright terms: Public domain | W3C validator |