MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp43 Structured version   Visualization version   GIF version

Theorem imp43 427
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 421 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 406 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fundmen  9005  fiint  9284  fiintOLD  9285  ltexprlem6  11001  divgt0  12058  divge0  12059  le2sq2  14107  iscatd  17641  isfuncd  17834  islmodd  20779  lmodvsghm  20836  islssd  20848  basis2  22845  neindisj  23011  dvidlem  25823  spansneleq  31506  elspansn4  31509  adjmul  32028  kbass6  32057  mdsl0  32246  chirredlem1  32326  r1peuqusdeg1  35637  poimirlem29  37650  rngonegmn1r  37943  3dim1  39468  linepsubN  39753  pmapsub  39769  tgoldbach  47822
  Copyright terms: Public domain W3C validator