MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp43 Structured version   Visualization version   GIF version

Theorem imp43 427
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 421 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 406 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fundmen  9045  fiint  9338  fiintOLD  9339  ltexprlem6  11055  divgt0  12110  divge0  12111  le2sq2  14153  iscatd  17685  isfuncd  17878  islmodd  20823  lmodvsghm  20880  islssd  20892  basis2  22889  neindisj  23055  dvidlem  25868  spansneleq  31551  elspansn4  31554  adjmul  32073  kbass6  32102  mdsl0  32291  chirredlem1  32371  r1peuqusdeg1  35665  poimirlem29  37673  rngonegmn1r  37966  3dim1  39486  linepsubN  39771  pmapsub  39787  tgoldbach  47831
  Copyright terms: Public domain W3C validator