![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3476 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5902 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1955 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴)) | |
4 | vex 3476 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 5990 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
7 | 1 | eldm2 5902 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
8 | 7 | anbi2i 621 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 302 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 275 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4205 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2739 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∩ cin 3948 ⟨cop 4635 dom cdm 5677 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-dm 5687 df-res 5689 |
This theorem is referenced by: ssdmres 6005 dmresexg 6006 dmressnsn 6024 eldmeldmressn 6026 relresdm1 6034 imadisj 6080 imainrect 6181 dmresv 6200 resdmres 6232 resdmss 6235 coeq0 6255 resssxp 6270 snres0 6298 funimacnv 6630 fnresdisj 6671 fnres 6678 fresaunres2 6764 nfvres 6933 ssimaex 6977 fnreseql 7050 respreima 7068 fveqressseq 7082 ffvresb 7127 fsnunfv 7188 funfvima 7235 funiunfv 7251 offres 7974 fnwelem 8121 ressuppss 8172 ressuppssdif 8174 frrlem11 8285 frrlem12 8286 smores 8356 smores3 8357 smores2 8358 tz7.44-2 8411 tz7.44-3 8412 frfnom 8439 sbthlem5 9091 sbthlem7 9093 domss2 9140 imafiALT 9349 ordtypelem4 9520 wdomima2g 9585 r0weon 10011 imadomg 10533 dmaddpi 10889 dmmulpi 10890 ltweuz 13932 dmhashres 14307 limsupgle 15427 fvsetsid 17107 setsdm 17109 setsfun 17110 setsfun0 17111 setsres 17117 lubdm 18310 glbdm 18323 gsumzaddlem 19832 dprdcntz2 19951 lmres 23026 imacmp 23123 qtoptop2 23425 kqdisj 23458 metreslem 24090 setsmstopn 24208 ismbl 25277 mbfres 25395 dvres3a 25665 cpnres 25688 dvlipcn 25745 dvlip2 25746 c1lip3 25750 dvcnvrelem1 25768 dvcvx 25771 dvlog 26393 sltres 27399 nolesgn2ores 27409 nogesgn1ores 27411 nodense 27429 nosupres 27444 nosupbnd1lem1 27445 nosupbnd2lem1 27452 nosupbnd2 27453 noinfres 27459 noinfbnd1lem1 27460 noinfbnd2lem1 27467 noetasuplem2 27471 noetainflem2 27475 uhgrspansubgrlem 28812 trlsegvdeglem4 29741 hlimcaui 30754 ftc2re 33906 dfrdg2 35069 bj-fvsnun2 36442 caures 36933 ssbnd 36961 mapfzcons1 41759 diophrw 41801 eldioph2lem1 41802 eldioph2lem2 41803 tfsconcatrev 42402 dmresss 44233 limsupresxr 44782 liminfresxr 44783 fourierdlem93 45215 fouriersw 45247 sssmf 45754 eldmressn 46047 fnresfnco 46051 afvres 46180 afv2res 46247 |
Copyright terms: Public domain | W3C validator |