| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5865 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelresi 5958 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 7 | 1 | eldm2 5865 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
| 10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 4175 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | eqcomi 2738 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∩ cin 3913 〈cop 4595 dom cdm 5638 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-res 5650 |
| This theorem is referenced by: ssdmres 5984 dmresexg 5985 dmressnsn 5994 eldmeldmressn 5996 relresdm1 6004 imadisj 6051 imainrect 6154 dmresv 6173 resdmres 6205 resdmss 6208 coeq0 6228 resssxp 6243 snres0 6271 funimacnv 6597 fnresdisj 6638 fnres 6645 fresaunres2 6732 nfvres 6899 ssimaex 6946 fnreseql 7020 respreima 7038 fveqressseq 7051 ffvresb 7097 fsnunfv 7161 funfvima 7204 funiunfv 7222 offres 7962 fnwelem 8110 ressuppss 8162 ressuppssdif 8164 frrlem11 8275 frrlem12 8276 smores 8321 smores3 8322 smores2 8323 tz7.44-2 8375 tz7.44-3 8376 frfnom 8403 sbthlem5 9055 sbthlem7 9057 domss2 9100 imafi 9264 ordtypelem4 9474 wdomima2g 9539 r0weon 9965 imadomg 10487 dmaddpi 10843 dmmulpi 10844 ltweuz 13926 dmhashres 14306 limsupgle 15443 fvsetsid 17138 setsdm 17140 setsfun 17141 setsfun0 17142 setsres 17148 lubdm 18310 glbdm 18323 gsumzaddlem 19851 dprdcntz2 19970 lmres 23187 imacmp 23284 qtoptop2 23586 kqdisj 23619 metreslem 24250 setsmstopn 24366 ismbl 25427 mbfres 25545 dvres3a 25815 cpnres 25839 dvlipcn 25899 dvlip2 25900 c1lip3 25904 dvcnvrelem1 25922 dvcvx 25925 dvlog 26560 sltres 27574 nolesgn2ores 27584 nogesgn1ores 27586 nodense 27604 nosupres 27619 nosupbnd1lem1 27620 nosupbnd2lem1 27627 nosupbnd2 27628 noinfres 27634 noinfbnd1lem1 27635 noinfbnd2lem1 27642 noetasuplem2 27646 noetainflem2 27650 onsiso 28169 bdayn0sf1o 28259 uhgrspansubgrlem 29217 trlsegvdeglem4 30152 hlimcaui 31165 ftc2re 34589 dfrdg2 35783 bj-fvsnun2 37244 caures 37754 ssbnd 37782 mapfzcons1 42705 diophrw 42747 eldioph2lem1 42748 eldioph2lem2 42749 tfsconcatrev 43337 limsupresxr 45764 liminfresxr 45765 fourierdlem93 46197 fouriersw 46229 sssmf 46736 eldmressn 47035 fnresfnco 47039 afvres 47170 afv2res 47237 resinsn 48857 resinsnALT 48858 tposrescnv 48864 |
| Copyright terms: Public domain | W3C validator |