| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5848 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 3442 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelresi 5942 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 7 | 1 | eldm2 5848 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
| 10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 4165 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | eqcomi 2738 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∩ cin 3904 〈cop 4585 dom cdm 5623 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-dm 5633 df-res 5635 |
| This theorem is referenced by: ssdmres 5968 dmresexg 5969 dmressnsn 5978 eldmeldmressn 5980 relresdm1 5988 imadisj 6035 imainrect 6134 dmresv 6153 resdmres 6185 resdmss 6188 coeq0 6208 resssxp 6222 snres0 6250 funimacnv 6567 fnresdisj 6606 fnres 6613 fresaunres2 6700 nfvres 6865 ssimaex 6912 fnreseql 6986 respreima 7004 fveqressseq 7017 ffvresb 7063 fsnunfv 7127 funfvima 7170 funiunfv 7188 offres 7925 fnwelem 8071 ressuppss 8123 ressuppssdif 8125 frrlem11 8236 frrlem12 8237 smores 8282 smores3 8283 smores2 8284 tz7.44-2 8336 tz7.44-3 8337 frfnom 8364 sbthlem5 9015 sbthlem7 9017 domss2 9060 imafi 9222 ordtypelem4 9432 wdomima2g 9497 r0weon 9925 imadomg 10447 dmaddpi 10803 dmmulpi 10804 ltweuz 13887 dmhashres 14267 limsupgle 15403 fvsetsid 17098 setsdm 17100 setsfun 17101 setsfun0 17102 setsres 17108 lubdm 18274 glbdm 18287 gsumzaddlem 19819 dprdcntz2 19938 lmres 23204 imacmp 23301 qtoptop2 23603 kqdisj 23636 metreslem 24267 setsmstopn 24383 ismbl 25444 mbfres 25562 dvres3a 25832 cpnres 25856 dvlipcn 25916 dvlip2 25917 c1lip3 25921 dvcnvrelem1 25939 dvcvx 25942 dvlog 26577 sltres 27591 nolesgn2ores 27601 nogesgn1ores 27603 nodense 27621 nosupres 27636 nosupbnd1lem1 27637 nosupbnd2lem1 27644 nosupbnd2 27645 noinfres 27651 noinfbnd1lem1 27652 noinfbnd2lem1 27659 noetasuplem2 27663 noetainflem2 27667 onsiso 28193 bdayn0sf1o 28283 uhgrspansubgrlem 29254 trlsegvdeglem4 30186 hlimcaui 31199 ftc2re 34585 dfrdg2 35788 bj-fvsnun2 37249 caures 37759 ssbnd 37787 mapfzcons1 42710 diophrw 42752 eldioph2lem1 42753 eldioph2lem2 42754 tfsconcatrev 43341 limsupresxr 45767 liminfresxr 45768 fourierdlem93 46200 fouriersw 46232 sssmf 46739 eldmressn 47041 fnresfnco 47045 afvres 47176 afv2res 47243 resinsn 48876 resinsnALT 48877 tposrescnv 48883 |
| Copyright terms: Public domain | W3C validator |