Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5810 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1957 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
4 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 5899 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
6 | 5 | exbii 1850 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
7 | 1 | eldm2 5810 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 275 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4138 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2747 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∩ cin 3886 〈cop 4567 dom cdm 5589 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 df-res 5601 |
This theorem is referenced by: ssdmres 5914 dmresexg 5915 dmressnsn 5933 eldmeldmressn 5935 imadisj 5988 imainrect 6084 dmresv 6103 resdmres 6135 resdmss 6138 coeq0 6159 resssxp 6173 funimacnv 6515 fnresdisj 6552 fnres 6559 fresaunres2 6646 nfvres 6810 ssimaex 6853 fnreseql 6925 respreima 6943 fveqressseq 6957 ffvresb 6998 fsnunfv 7059 funfvima 7106 funiunfv 7121 offres 7826 fnwelem 7972 ressuppss 7999 ressuppssdif 8001 frrlem11 8112 frrlem12 8113 smores 8183 smores3 8184 smores2 8185 tz7.44-2 8238 tz7.44-3 8239 frfnom 8266 sbthlem5 8874 sbthlem7 8876 domss2 8923 imafiALT 9112 ordtypelem4 9280 wdomima2g 9345 r0weon 9768 imadomg 10290 dmaddpi 10646 dmmulpi 10647 ltweuz 13681 dmhashres 14055 limsupgle 15186 fvsetsid 16869 setsdm 16871 setsfun 16872 setsfun0 16873 setsres 16879 lubdm 18069 glbdm 18082 gsumzaddlem 19522 dprdcntz2 19641 lmres 22451 imacmp 22548 qtoptop2 22850 kqdisj 22883 metreslem 23515 setsmstopn 23633 ismbl 24690 mbfres 24808 dvres3a 25078 cpnres 25101 dvlipcn 25158 dvlip2 25159 c1lip3 25163 dvcnvrelem1 25181 dvcvx 25184 dvlog 25806 uhgrspansubgrlem 27657 trlsegvdeglem4 28587 hlimcaui 29598 funresdm1 30944 ftc2re 32578 snres0 33675 dfrdg2 33771 sltres 33865 nolesgn2ores 33875 nogesgn1ores 33877 nodense 33895 nosupres 33910 nosupbnd1lem1 33911 nosupbnd2lem1 33918 nosupbnd2 33919 noinfres 33925 noinfbnd1lem1 33926 noinfbnd2lem1 33933 noetasuplem2 33937 noetainflem2 33941 bj-fvsnun2 35427 caures 35918 ssbnd 35946 mapfzcons1 40539 diophrw 40581 eldioph2lem1 40582 eldioph2lem2 40583 dmresss 42774 limsupresxr 43307 liminfresxr 43308 fourierdlem93 43740 fouriersw 43772 sssmf 44274 eldmressn 44531 fnresfnco 44535 afvres 44664 afv2res 44731 |
Copyright terms: Public domain | W3C validator |