| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5847 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.42v 1954 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 3441 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelresi 5943 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 6 | 5 | exbii 1849 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 7 | 1 | eldm2 5847 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
| 10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 4161 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | eqcomi 2742 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∩ cin 3897 〈cop 4583 dom cdm 5621 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-dm 5631 df-res 5633 |
| This theorem is referenced by: ssdmres 5969 dmresexg 5970 dmressnsn 5979 eldmeldmressn 5981 relresdm1 5989 imadisj 6036 imainrect 6136 dmresv 6155 resdmres 6187 resdmss 6190 coeq0 6211 resssxp 6225 snres0 6253 funimacnv 6570 fnresdisj 6609 fnres 6616 fresaunres2 6703 nfvres 6869 ssimaex 6916 fnreseql 6990 respreima 7008 fveqressseq 7021 ffvresb 7067 fsnunfv 7130 funfvima 7173 funiunfv 7191 offres 7924 fnwelem 8070 ressuppss 8122 ressuppssdif 8124 frrlem11 8235 frrlem12 8236 smores 8281 smores3 8282 smores2 8283 tz7.44-2 8335 tz7.44-3 8336 frfnom 8363 sbthlem5 9015 sbthlem7 9017 domss2 9060 imafi 9210 ordtypelem4 9418 wdomima2g 9483 r0weon 9914 imadomg 10436 dmaddpi 10792 dmmulpi 10793 ltweuz 13875 dmhashres 14255 limsupgle 15391 fvsetsid 17086 setsdm 17088 setsfun 17089 setsfun0 17090 setsres 17096 lubdm 18263 glbdm 18276 gsumzaddlem 19841 dprdcntz2 19960 lmres 23235 imacmp 23332 qtoptop2 23634 kqdisj 23667 metreslem 24297 setsmstopn 24413 ismbl 25474 mbfres 25592 dvres3a 25862 cpnres 25886 dvlipcn 25946 dvlip2 25947 c1lip3 25951 dvcnvrelem1 25969 dvcvx 25972 dvlog 26607 sltres 27621 nolesgn2ores 27631 nogesgn1ores 27633 nodense 27651 nosupres 27666 nosupbnd1lem1 27667 nosupbnd2lem1 27674 nosupbnd2 27675 noinfres 27681 noinfbnd1lem1 27682 noinfbnd2lem1 27689 noetasuplem2 27693 noetainflem2 27697 onsiso 28225 bdayn0sf1o 28315 uhgrspansubgrlem 29289 trlsegvdeglem4 30224 hlimcaui 31237 ftc2re 34683 dfrdg2 35909 bj-fvsnun2 37373 caures 37873 ssbnd 37901 dmcnvepres 38487 dmuncnvepres 38488 dmxrncnvepres2 38530 mapfzcons1 42874 diophrw 42916 eldioph2lem1 42917 eldioph2lem2 42918 tfsconcatrev 43505 limsupresxr 45926 liminfresxr 45927 fourierdlem93 46359 fouriersw 46391 sssmf 46898 eldmressn 47199 fnresfnco 47203 afvres 47334 afv2res 47401 resinsn 49033 resinsnALT 49034 tposrescnv 49040 |
| Copyright terms: Public domain | W3C validator |