| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5886 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelresi 5979 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 7 | 1 | eldm2 5886 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
| 10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 4192 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | eqcomi 2745 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∩ cin 3930 〈cop 4612 dom cdm 5659 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-res 5671 |
| This theorem is referenced by: ssdmres 6005 dmresexg 6006 dmressnsn 6015 eldmeldmressn 6017 relresdm1 6025 imadisj 6072 imainrect 6175 dmresv 6194 resdmres 6226 resdmss 6229 coeq0 6249 resssxp 6264 snres0 6292 funimacnv 6622 fnresdisj 6663 fnres 6670 fresaunres2 6755 nfvres 6922 ssimaex 6969 fnreseql 7043 respreima 7061 fveqressseq 7074 ffvresb 7120 fsnunfv 7184 funfvima 7227 funiunfv 7245 offres 7987 fnwelem 8135 ressuppss 8187 ressuppssdif 8189 frrlem11 8300 frrlem12 8301 smores 8371 smores3 8372 smores2 8373 tz7.44-2 8426 tz7.44-3 8427 frfnom 8454 sbthlem5 9106 sbthlem7 9108 domss2 9155 imafi 9330 ordtypelem4 9540 wdomima2g 9605 r0weon 10031 imadomg 10553 dmaddpi 10909 dmmulpi 10910 ltweuz 13984 dmhashres 14364 limsupgle 15498 fvsetsid 17192 setsdm 17194 setsfun 17195 setsfun0 17196 setsres 17202 lubdm 18366 glbdm 18379 gsumzaddlem 19907 dprdcntz2 20026 lmres 23243 imacmp 23340 qtoptop2 23642 kqdisj 23675 metreslem 24306 setsmstopn 24422 ismbl 25484 mbfres 25602 dvres3a 25872 cpnres 25896 dvlipcn 25956 dvlip2 25957 c1lip3 25961 dvcnvrelem1 25979 dvcvx 25982 dvlog 26617 sltres 27631 nolesgn2ores 27641 nogesgn1ores 27643 nodense 27661 nosupres 27676 nosupbnd1lem1 27677 nosupbnd2lem1 27684 nosupbnd2 27685 noinfres 27691 noinfbnd1lem1 27692 noinfbnd2lem1 27699 noetasuplem2 27703 noetainflem2 27707 onsiso 28226 bdayn0sf1o 28316 uhgrspansubgrlem 29274 trlsegvdeglem4 30209 hlimcaui 31222 ftc2re 34635 dfrdg2 35818 bj-fvsnun2 37279 caures 37789 ssbnd 37817 mapfzcons1 42707 diophrw 42749 eldioph2lem1 42750 eldioph2lem2 42751 tfsconcatrev 43339 limsupresxr 45762 liminfresxr 45763 fourierdlem93 46195 fouriersw 46227 sssmf 46734 eldmressn 47033 fnresfnco 47037 afvres 47168 afv2res 47235 resinsn 48814 resinsnALT 48815 tposrescnv 48821 |
| Copyright terms: Public domain | W3C validator |