![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5914 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1950 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
4 | vex 3481 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 6007 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
6 | 5 | exbii 1844 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
7 | 1 | eldm2 5914 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4219 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2743 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 ∩ cin 3961 〈cop 4636 dom cdm 5688 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-dm 5698 df-res 5700 |
This theorem is referenced by: ssdmres 6032 dmresexg 6033 dmressnsn 6042 eldmeldmressn 6044 relresdm1 6052 imadisj 6099 imainrect 6202 dmresv 6221 resdmres 6253 resdmss 6256 coeq0 6276 resssxp 6291 snres0 6319 funimacnv 6648 fnresdisj 6688 fnres 6695 fresaunres2 6780 nfvres 6947 ssimaex 6993 fnreseql 7067 respreima 7085 fveqressseq 7098 ffvresb 7144 fsnunfv 7206 funfvima 7249 funiunfv 7267 offres 8006 fnwelem 8154 ressuppss 8206 ressuppssdif 8208 frrlem11 8319 frrlem12 8320 smores 8390 smores3 8391 smores2 8392 tz7.44-2 8445 tz7.44-3 8446 frfnom 8473 sbthlem5 9125 sbthlem7 9127 domss2 9174 imafi 9350 ordtypelem4 9558 wdomima2g 9623 r0weon 10049 imadomg 10571 dmaddpi 10927 dmmulpi 10928 ltweuz 13998 dmhashres 14376 limsupgle 15509 fvsetsid 17201 setsdm 17203 setsfun 17204 setsfun0 17205 setsres 17211 lubdm 18408 glbdm 18421 gsumzaddlem 19953 dprdcntz2 20072 lmres 23323 imacmp 23420 qtoptop2 23722 kqdisj 23755 metreslem 24387 setsmstopn 24505 ismbl 25574 mbfres 25692 dvres3a 25963 cpnres 25987 dvlipcn 26047 dvlip2 26048 c1lip3 26052 dvcnvrelem1 26070 dvcvx 26073 dvlog 26707 sltres 27721 nolesgn2ores 27731 nogesgn1ores 27733 nodense 27751 nosupres 27766 nosupbnd1lem1 27767 nosupbnd2lem1 27774 nosupbnd2 27775 noinfres 27781 noinfbnd1lem1 27782 noinfbnd2lem1 27789 noetasuplem2 27793 noetainflem2 27797 uhgrspansubgrlem 29321 trlsegvdeglem4 30251 hlimcaui 31264 ftc2re 34591 dfrdg2 35776 bj-fvsnun2 37238 caures 37746 ssbnd 37774 mapfzcons1 42704 diophrw 42746 eldioph2lem1 42747 eldioph2lem2 42748 tfsconcatrev 43337 limsupresxr 45721 liminfresxr 45722 fourierdlem93 46154 fouriersw 46186 sssmf 46693 eldmressn 46986 fnresfnco 46990 afvres 47121 afv2res 47188 |
Copyright terms: Public domain | W3C validator |