| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5836 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.42v 1954 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelresi 5931 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 6 | 5 | exbii 1849 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 7 | 1 | eldm2 5836 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
| 10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 4157 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | eqcomi 2740 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∩ cin 3896 〈cop 4577 dom cdm 5611 ↾ cres 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-dm 5621 df-res 5623 |
| This theorem is referenced by: ssdmres 5957 dmresexg 5958 dmressnsn 5967 eldmeldmressn 5969 relresdm1 5977 imadisj 6024 imainrect 6123 dmresv 6142 resdmres 6174 resdmss 6177 coeq0 6198 resssxp 6212 snres0 6240 funimacnv 6557 fnresdisj 6596 fnres 6603 fresaunres2 6690 nfvres 6855 ssimaex 6902 fnreseql 6976 respreima 6994 fveqressseq 7007 ffvresb 7053 fsnunfv 7116 funfvima 7159 funiunfv 7177 offres 7910 fnwelem 8056 ressuppss 8108 ressuppssdif 8110 frrlem11 8221 frrlem12 8222 smores 8267 smores3 8268 smores2 8269 tz7.44-2 8321 tz7.44-3 8322 frfnom 8349 sbthlem5 8999 sbthlem7 9001 domss2 9044 imafi 9194 ordtypelem4 9402 wdomima2g 9467 r0weon 9898 imadomg 10420 dmaddpi 10776 dmmulpi 10777 ltweuz 13863 dmhashres 14243 limsupgle 15379 fvsetsid 17074 setsdm 17076 setsfun 17077 setsfun0 17078 setsres 17084 lubdm 18250 glbdm 18263 gsumzaddlem 19828 dprdcntz2 19947 lmres 23210 imacmp 23307 qtoptop2 23609 kqdisj 23642 metreslem 24272 setsmstopn 24388 ismbl 25449 mbfres 25567 dvres3a 25837 cpnres 25861 dvlipcn 25921 dvlip2 25922 c1lip3 25926 dvcnvrelem1 25944 dvcvx 25947 dvlog 26582 sltres 27596 nolesgn2ores 27606 nogesgn1ores 27608 nodense 27626 nosupres 27641 nosupbnd1lem1 27642 nosupbnd2lem1 27649 nosupbnd2 27650 noinfres 27656 noinfbnd1lem1 27657 noinfbnd2lem1 27664 noetasuplem2 27668 noetainflem2 27672 onsiso 28200 bdayn0sf1o 28290 uhgrspansubgrlem 29263 trlsegvdeglem4 30195 hlimcaui 31208 ftc2re 34603 dfrdg2 35829 bj-fvsnun2 37290 caures 37800 ssbnd 37828 mapfzcons1 42750 diophrw 42792 eldioph2lem1 42793 eldioph2lem2 42794 tfsconcatrev 43381 limsupresxr 45804 liminfresxr 45805 fourierdlem93 46237 fouriersw 46269 sssmf 46776 eldmressn 47068 fnresfnco 47072 afvres 47203 afv2res 47270 resinsn 48903 resinsnALT 48904 tposrescnv 48910 |
| Copyright terms: Public domain | W3C validator |