Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5799 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1958 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
4 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 5888 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
6 | 5 | exbii 1851 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
7 | 1 | eldm2 5799 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 302 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 275 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4135 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2747 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∩ cin 3882 〈cop 4564 dom cdm 5580 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-res 5592 |
This theorem is referenced by: ssdmres 5903 dmresexg 5904 dmressnsn 5922 eldmeldmressn 5924 imadisj 5977 imainrect 6073 dmresv 6092 resdmres 6124 resdmss 6127 coeq0 6148 resssxp 6162 funimacnv 6499 fnresdisj 6536 fnres 6543 fresaunres2 6630 nfvres 6792 ssimaex 6835 fnreseql 6907 respreima 6925 fveqressseq 6939 ffvresb 6980 fsnunfv 7041 funfvima 7088 funiunfv 7103 offres 7799 fnwelem 7943 ressuppss 7970 ressuppssdif 7972 frrlem11 8083 frrlem12 8084 smores 8154 smores3 8155 smores2 8156 tz7.44-2 8209 tz7.44-3 8210 frfnom 8236 sbthlem5 8827 sbthlem7 8829 domss2 8872 imafiALT 9042 ordtypelem4 9210 wdomima2g 9275 r0weon 9699 imadomg 10221 dmaddpi 10577 dmmulpi 10578 ltweuz 13609 dmhashres 13983 limsupgle 15114 fvsetsid 16797 setsdm 16799 setsfun 16800 setsfun0 16801 setsres 16807 lubdm 17984 glbdm 17997 gsumzaddlem 19437 dprdcntz2 19556 lmres 22359 imacmp 22456 qtoptop2 22758 kqdisj 22791 metreslem 23423 setsmstopn 23539 ismbl 24595 mbfres 24713 dvres3a 24983 cpnres 25006 dvlipcn 25063 dvlip2 25064 c1lip3 25068 dvcnvrelem1 25086 dvcvx 25089 dvlog 25711 uhgrspansubgrlem 27560 trlsegvdeglem4 28488 hlimcaui 29499 funresdm1 30845 ftc2re 32478 snres0 33577 dfrdg2 33677 sltres 33792 nolesgn2ores 33802 nogesgn1ores 33804 nodense 33822 nosupres 33837 nosupbnd1lem1 33838 nosupbnd2lem1 33845 nosupbnd2 33846 noinfres 33852 noinfbnd1lem1 33853 noinfbnd2lem1 33860 noetasuplem2 33864 noetainflem2 33868 bj-fvsnun2 35354 caures 35845 ssbnd 35873 mapfzcons1 40455 diophrw 40497 eldioph2lem1 40498 eldioph2lem2 40499 dmresss 42663 limsupresxr 43197 liminfresxr 43198 fourierdlem93 43630 fouriersw 43662 sssmf 44161 eldmressn 44418 fnresfnco 44422 afvres 44551 afv2res 44618 |
Copyright terms: Public domain | W3C validator |