| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5855 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 3448 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelresi 5947 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 7 | 1 | eldm2 5855 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
| 10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 4171 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | eqcomi 2738 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∩ cin 3910 〈cop 4591 dom cdm 5631 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-res 5643 |
| This theorem is referenced by: ssdmres 5973 dmresexg 5974 dmressnsn 5983 eldmeldmressn 5985 relresdm1 5993 imadisj 6040 imainrect 6142 dmresv 6161 resdmres 6193 resdmss 6196 coeq0 6216 resssxp 6231 snres0 6259 funimacnv 6581 fnresdisj 6620 fnres 6627 fresaunres2 6714 nfvres 6881 ssimaex 6928 fnreseql 7002 respreima 7020 fveqressseq 7033 ffvresb 7079 fsnunfv 7143 funfvima 7186 funiunfv 7204 offres 7941 fnwelem 8087 ressuppss 8139 ressuppssdif 8141 frrlem11 8252 frrlem12 8253 smores 8298 smores3 8299 smores2 8300 tz7.44-2 8352 tz7.44-3 8353 frfnom 8380 sbthlem5 9032 sbthlem7 9034 domss2 9077 imafi 9240 ordtypelem4 9450 wdomima2g 9515 r0weon 9941 imadomg 10463 dmaddpi 10819 dmmulpi 10820 ltweuz 13902 dmhashres 14282 limsupgle 15419 fvsetsid 17114 setsdm 17116 setsfun 17117 setsfun0 17118 setsres 17124 lubdm 18286 glbdm 18299 gsumzaddlem 19827 dprdcntz2 19946 lmres 23163 imacmp 23260 qtoptop2 23562 kqdisj 23595 metreslem 24226 setsmstopn 24342 ismbl 25403 mbfres 25521 dvres3a 25791 cpnres 25815 dvlipcn 25875 dvlip2 25876 c1lip3 25880 dvcnvrelem1 25898 dvcvx 25901 dvlog 26536 sltres 27550 nolesgn2ores 27560 nogesgn1ores 27562 nodense 27580 nosupres 27595 nosupbnd1lem1 27596 nosupbnd2lem1 27603 nosupbnd2 27604 noinfres 27610 noinfbnd1lem1 27611 noinfbnd2lem1 27618 noetasuplem2 27622 noetainflem2 27626 onsiso 28145 bdayn0sf1o 28235 uhgrspansubgrlem 29193 trlsegvdeglem4 30125 hlimcaui 31138 ftc2re 34562 dfrdg2 35756 bj-fvsnun2 37217 caures 37727 ssbnd 37755 mapfzcons1 42678 diophrw 42720 eldioph2lem1 42721 eldioph2lem2 42722 tfsconcatrev 43310 limsupresxr 45737 liminfresxr 45738 fourierdlem93 46170 fouriersw 46202 sssmf 46709 eldmressn 47011 fnresfnco 47015 afvres 47146 afv2res 47213 resinsn 48833 resinsnALT 48834 tposrescnv 48840 |
| Copyright terms: Public domain | W3C validator |