Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3435 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5808 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1961 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
4 | vex 3435 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 5897 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
6 | 5 | exbii 1854 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
7 | 1 | eldm2 5808 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 275 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4144 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2749 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∩ cin 3891 〈cop 4573 dom cdm 5589 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5595 df-dm 5599 df-res 5601 |
This theorem is referenced by: ssdmres 5912 dmresexg 5913 dmressnsn 5931 eldmeldmressn 5933 imadisj 5986 imainrect 6082 dmresv 6101 resdmres 6133 resdmss 6136 coeq0 6157 resssxp 6171 funimacnv 6512 fnresdisj 6549 fnres 6556 fresaunres2 6643 nfvres 6805 ssimaex 6848 fnreseql 6920 respreima 6938 fveqressseq 6952 ffvresb 6993 fsnunfv 7054 funfvima 7101 funiunfv 7116 offres 7817 fnwelem 7961 ressuppss 7988 ressuppssdif 7990 frrlem11 8101 frrlem12 8102 smores 8172 smores3 8173 smores2 8174 tz7.44-2 8227 tz7.44-3 8228 frfnom 8255 sbthlem5 8854 sbthlem7 8856 domss2 8903 imafiALT 9088 ordtypelem4 9256 wdomima2g 9321 r0weon 9767 imadomg 10289 dmaddpi 10645 dmmulpi 10646 ltweuz 13677 dmhashres 14051 limsupgle 15182 fvsetsid 16865 setsdm 16867 setsfun 16868 setsfun0 16869 setsres 16875 lubdm 18065 glbdm 18078 gsumzaddlem 19518 dprdcntz2 19637 lmres 22447 imacmp 22544 qtoptop2 22846 kqdisj 22879 metreslem 23511 setsmstopn 23629 ismbl 24686 mbfres 24804 dvres3a 25074 cpnres 25097 dvlipcn 25154 dvlip2 25155 c1lip3 25159 dvcnvrelem1 25177 dvcvx 25180 dvlog 25802 uhgrspansubgrlem 27653 trlsegvdeglem4 28581 hlimcaui 29592 funresdm1 30938 ftc2re 32572 snres0 33669 dfrdg2 33765 sltres 33859 nolesgn2ores 33869 nogesgn1ores 33871 nodense 33889 nosupres 33904 nosupbnd1lem1 33905 nosupbnd2lem1 33912 nosupbnd2 33913 noinfres 33919 noinfbnd1lem1 33920 noinfbnd2lem1 33927 noetasuplem2 33931 noetainflem2 33935 bj-fvsnun2 35421 caures 35912 ssbnd 35940 mapfzcons1 40534 diophrw 40576 eldioph2lem1 40577 eldioph2lem2 40578 dmresss 42742 limsupresxr 43276 liminfresxr 43277 fourierdlem93 43709 fouriersw 43741 sssmf 44240 eldmressn 44497 fnresfnco 44501 afvres 44630 afv2res 44697 |
Copyright terms: Public domain | W3C validator |