![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5899 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1957 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴)) | |
4 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 5987 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
6 | 5 | exbii 1850 | . . . . 5 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
7 | 1 | eldm2 5899 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 302 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 275 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4203 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2741 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∩ cin 3946 ⟨cop 4633 dom cdm 5675 ↾ cres 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-dm 5685 df-res 5687 |
This theorem is referenced by: ssdmres 6002 dmresexg 6003 dmressnsn 6021 eldmeldmressn 6023 relresdm1 6031 imadisj 6076 imainrect 6177 dmresv 6196 resdmres 6228 resdmss 6231 coeq0 6251 resssxp 6266 snres0 6294 funimacnv 6626 fnresdisj 6667 fnres 6674 fresaunres2 6760 nfvres 6929 ssimaex 6973 fnreseql 7046 respreima 7064 fveqressseq 7078 ffvresb 7120 fsnunfv 7181 funfvima 7228 funiunfv 7243 offres 7966 fnwelem 8113 ressuppss 8164 ressuppssdif 8166 frrlem11 8277 frrlem12 8278 smores 8348 smores3 8349 smores2 8350 tz7.44-2 8403 tz7.44-3 8404 frfnom 8431 sbthlem5 9083 sbthlem7 9085 domss2 9132 imafiALT 9341 ordtypelem4 9512 wdomima2g 9577 r0weon 10003 imadomg 10525 dmaddpi 10881 dmmulpi 10882 ltweuz 13922 dmhashres 14297 limsupgle 15417 fvsetsid 17097 setsdm 17099 setsfun 17100 setsfun0 17101 setsres 17107 lubdm 18300 glbdm 18313 gsumzaddlem 19783 dprdcntz2 19902 lmres 22795 imacmp 22892 qtoptop2 23194 kqdisj 23227 metreslem 23859 setsmstopn 23977 ismbl 25034 mbfres 25152 dvres3a 25422 cpnres 25445 dvlipcn 25502 dvlip2 25503 c1lip3 25507 dvcnvrelem1 25525 dvcvx 25528 dvlog 26150 sltres 27154 nolesgn2ores 27164 nogesgn1ores 27166 nodense 27184 nosupres 27199 nosupbnd1lem1 27200 nosupbnd2lem1 27207 nosupbnd2 27208 noinfres 27214 noinfbnd1lem1 27215 noinfbnd2lem1 27222 noetasuplem2 27226 noetainflem2 27230 uhgrspansubgrlem 28536 trlsegvdeglem4 29465 hlimcaui 30476 ftc2re 33598 dfrdg2 34755 bj-fvsnun2 36125 caures 36616 ssbnd 36644 mapfzcons1 41440 diophrw 41482 eldioph2lem1 41483 eldioph2lem2 41484 tfsconcatrev 42083 dmresss 43918 limsupresxr 44468 liminfresxr 44469 fourierdlem93 44901 fouriersw 44933 sssmf 45440 eldmressn 45733 fnresfnco 45737 afvres 45866 afv2res 45933 |
Copyright terms: Public domain | W3C validator |