![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5902 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1958 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴)) | |
4 | vex 3479 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 5990 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
6 | 5 | exbii 1851 | . . . . 5 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
7 | 1 | eldm2 5902 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
8 | 7 | anbi2i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4205 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2742 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∩ cin 3948 ⟨cop 4635 dom cdm 5677 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-dm 5687 df-res 5689 |
This theorem is referenced by: ssdmres 6005 dmresexg 6006 dmressnsn 6024 eldmeldmressn 6026 relresdm1 6034 imadisj 6080 imainrect 6181 dmresv 6200 resdmres 6232 resdmss 6235 coeq0 6255 resssxp 6270 snres0 6298 funimacnv 6630 fnresdisj 6671 fnres 6678 fresaunres2 6764 nfvres 6933 ssimaex 6977 fnreseql 7050 respreima 7068 fveqressseq 7082 ffvresb 7124 fsnunfv 7185 funfvima 7232 funiunfv 7247 offres 7970 fnwelem 8117 ressuppss 8168 ressuppssdif 8170 frrlem11 8281 frrlem12 8282 smores 8352 smores3 8353 smores2 8354 tz7.44-2 8407 tz7.44-3 8408 frfnom 8435 sbthlem5 9087 sbthlem7 9089 domss2 9136 imafiALT 9345 ordtypelem4 9516 wdomima2g 9581 r0weon 10007 imadomg 10529 dmaddpi 10885 dmmulpi 10886 ltweuz 13926 dmhashres 14301 limsupgle 15421 fvsetsid 17101 setsdm 17103 setsfun 17104 setsfun0 17105 setsres 17111 lubdm 18304 glbdm 18317 gsumzaddlem 19789 dprdcntz2 19908 lmres 22804 imacmp 22901 qtoptop2 23203 kqdisj 23236 metreslem 23868 setsmstopn 23986 ismbl 25043 mbfres 25161 dvres3a 25431 cpnres 25454 dvlipcn 25511 dvlip2 25512 c1lip3 25516 dvcnvrelem1 25534 dvcvx 25537 dvlog 26159 sltres 27165 nolesgn2ores 27175 nogesgn1ores 27177 nodense 27195 nosupres 27210 nosupbnd1lem1 27211 nosupbnd2lem1 27218 nosupbnd2 27219 noinfres 27225 noinfbnd1lem1 27226 noinfbnd2lem1 27233 noetasuplem2 27237 noetainflem2 27241 uhgrspansubgrlem 28547 trlsegvdeglem4 29476 hlimcaui 30489 ftc2re 33610 dfrdg2 34767 bj-fvsnun2 36137 caures 36628 ssbnd 36656 mapfzcons1 41455 diophrw 41497 eldioph2lem1 41498 eldioph2lem2 41499 tfsconcatrev 42098 dmresss 43933 limsupresxr 44482 liminfresxr 44483 fourierdlem93 44915 fouriersw 44947 sssmf 45454 eldmressn 45747 fnresfnco 45751 afvres 45880 afv2res 45947 |
Copyright terms: Public domain | W3C validator |