![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5926 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
3 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) | |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelresi 6017 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
6 | 5 | exbii 1846 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
7 | 1 | eldm2 5926 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴)) |
9 | 3, 6, 8 | 3bitr4i 303 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴)) |
10 | 2, 9 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 4233 | . 2 ⊢ (𝐵 ∩ dom 𝐴) = dom (𝐴 ↾ 𝐵) |
12 | 11 | eqcomi 2749 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∩ cin 3975 〈cop 4654 dom cdm 5700 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-res 5712 |
This theorem is referenced by: ssdmres 6042 dmresexg 6043 dmressnsn 6052 eldmeldmressn 6054 relresdm1 6062 imadisj 6109 imainrect 6212 dmresv 6231 resdmres 6263 resdmss 6266 coeq0 6286 resssxp 6301 snres0 6329 funimacnv 6659 fnresdisj 6700 fnres 6707 fresaunres2 6793 nfvres 6961 ssimaex 7007 fnreseql 7081 respreima 7099 fveqressseq 7113 ffvresb 7159 fsnunfv 7221 funfvima 7267 funiunfv 7285 offres 8024 fnwelem 8172 ressuppss 8224 ressuppssdif 8226 frrlem11 8337 frrlem12 8338 smores 8408 smores3 8409 smores2 8410 tz7.44-2 8463 tz7.44-3 8464 frfnom 8491 sbthlem5 9153 sbthlem7 9155 domss2 9202 imafi 9381 ordtypelem4 9590 wdomima2g 9655 r0weon 10081 imadomg 10603 dmaddpi 10959 dmmulpi 10960 ltweuz 14012 dmhashres 14390 limsupgle 15523 fvsetsid 17215 setsdm 17217 setsfun 17218 setsfun0 17219 setsres 17225 lubdm 18421 glbdm 18434 gsumzaddlem 19963 dprdcntz2 20082 lmres 23329 imacmp 23426 qtoptop2 23728 kqdisj 23761 metreslem 24393 setsmstopn 24511 ismbl 25580 mbfres 25698 dvres3a 25969 cpnres 25993 dvlipcn 26053 dvlip2 26054 c1lip3 26058 dvcnvrelem1 26076 dvcvx 26079 dvlog 26711 sltres 27725 nolesgn2ores 27735 nogesgn1ores 27737 nodense 27755 nosupres 27770 nosupbnd1lem1 27771 nosupbnd2lem1 27778 nosupbnd2 27779 noinfres 27785 noinfbnd1lem1 27786 noinfbnd2lem1 27793 noetasuplem2 27797 noetainflem2 27801 uhgrspansubgrlem 29325 trlsegvdeglem4 30255 hlimcaui 31268 ftc2re 34575 dfrdg2 35759 bj-fvsnun2 37222 caures 37720 ssbnd 37748 mapfzcons1 42673 diophrw 42715 eldioph2lem1 42716 eldioph2lem2 42717 tfsconcatrev 43310 limsupresxr 45687 liminfresxr 45688 fourierdlem93 46120 fouriersw 46152 sssmf 46659 eldmressn 46952 fnresfnco 46956 afvres 47087 afv2res 47154 |
Copyright terms: Public domain | W3C validator |