| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4318 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 4192 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-in 3938 df-nul 4314 |
| This theorem is referenced by: 0in 4377 csbin 4422 res0 5975 dfpo2 6290 predprc 6332 fresaun 6754 oev2 8540 dju0en 10195 ackbij1lem13 10250 ackbij1lem16 10253 incexclem 15857 bitsinv1 16466 bitsinvp1 16473 sadcadd 16482 sadadd2 16484 sadid1 16492 bitsres 16497 smumullem 16516 ressbas 17262 sylow2a 19605 ablfac1eu 20061 indistopon 22944 fctop 22947 cctop 22949 rest0 23112 filconn 23826 volinun 25504 itg2cnlem2 25720 pthdlem2 29755 0pth 30111 1pthdlem2 30122 disjdifprg 32561 disjun0 32581 ofpreima2 32649 of0r 32661 ldgenpisyslem1 34199 0elcarsg 34344 carsgclctunlem1 34354 carsgclctunlem3 34357 ballotlemfval0 34533 sate0 35442 elima4 35798 bj-rest10 37111 bj-rest0 37116 mblfinlem2 37687 conrel1d 43654 conrel2d 43655 ntrk0kbimka 44030 clsneibex 44093 neicvgbex 44103 qinioo 45531 nnfoctbdjlem 46451 caragen0 46502 resinsnALT 48815 |
| Copyright terms: Public domain | W3C validator |