| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 4161 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-in 3905 df-nul 4283 |
| This theorem is referenced by: 0in 4346 csbin 4391 res0 5939 dfpo2 6251 predprc 6293 fresaun 6702 oev2 8447 dju0en 10078 ackbij1lem13 10133 ackbij1lem16 10136 incexclem 15750 bitsinv1 16360 bitsinvp1 16367 sadcadd 16376 sadadd2 16378 sadid1 16386 bitsres 16391 smumullem 16410 ressbas 17154 sylow2a 19539 ablfac1eu 19995 indistopon 22936 fctop 22939 cctop 22941 rest0 23104 filconn 23818 volinun 25494 itg2cnlem2 25710 pthdlem2 29767 0pth 30126 1pthdlem2 30137 disjdifprg 32576 disjun0 32596 ofpreima2 32670 of0r 32684 ldgenpisyslem1 34248 0elcarsg 34392 carsgclctunlem1 34402 carsgclctunlem3 34405 ballotlemfval0 34581 sate0 35531 elima4 35892 bj-rest10 37205 bj-rest0 37210 mblfinlem2 37771 conrel1d 43820 conrel2d 43821 ntrk0kbimka 44196 clsneibex 44259 neicvgbex 44269 qinioo 45697 nnfoctbdjlem 46615 caragen0 46666 resinsnALT 49034 |
| Copyright terms: Public domain | W3C validator |