Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version |
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 223 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
4 | 3 | ineqri 4135 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-nul 4254 |
This theorem is referenced by: 0in 4324 csbin 4370 res0 5884 dfpo2 6188 fresaun 6629 oev2 8315 dju0en 9862 ackbij1lem13 9919 ackbij1lem16 9922 incexclem 15476 bitsinv1 16077 bitsinvp1 16084 sadcadd 16093 sadadd2 16095 sadid1 16103 bitsres 16108 smumullem 16127 ressbas 16873 ressbasOLD 16874 sylow2a 19139 ablfac1eu 19591 indistopon 22059 fctop 22062 cctop 22064 rest0 22228 filconn 22942 volinun 24615 itg2cnlem2 24832 pthdlem2 28037 0pth 28390 1pthdlem2 28401 disjdifprg 30815 disjun0 30835 ofpreima2 30905 ldgenpisyslem1 32031 0elcarsg 32174 carsgclctunlem1 32184 carsgclctunlem3 32187 ballotlemfval0 32362 sate0 33277 elima4 33656 bj-rest10 35186 bj-rest0 35191 mblfinlem2 35742 conrel1d 41160 conrel2d 41161 ntrk0kbimka 41538 clsneibex 41601 neicvgbex 41611 qinioo 42963 nnfoctbdjlem 43883 caragen0 43934 |
Copyright terms: Public domain | W3C validator |