| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 4178 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-in 3924 df-nul 4300 |
| This theorem is referenced by: 0in 4363 csbin 4408 res0 5957 dfpo2 6272 predprc 6314 fresaun 6734 oev2 8490 dju0en 10136 ackbij1lem13 10191 ackbij1lem16 10194 incexclem 15809 bitsinv1 16419 bitsinvp1 16426 sadcadd 16435 sadadd2 16437 sadid1 16445 bitsres 16450 smumullem 16469 ressbas 17213 sylow2a 19556 ablfac1eu 20012 indistopon 22895 fctop 22898 cctop 22900 rest0 23063 filconn 23777 volinun 25454 itg2cnlem2 25670 pthdlem2 29705 0pth 30061 1pthdlem2 30072 disjdifprg 32511 disjun0 32531 ofpreima2 32597 of0r 32609 ldgenpisyslem1 34160 0elcarsg 34305 carsgclctunlem1 34315 carsgclctunlem3 34318 ballotlemfval0 34494 sate0 35409 elima4 35770 bj-rest10 37083 bj-rest0 37088 mblfinlem2 37659 conrel1d 43659 conrel2d 43660 ntrk0kbimka 44035 clsneibex 44098 neicvgbex 44108 qinioo 45540 nnfoctbdjlem 46460 caragen0 46511 resinsnALT 48865 |
| Copyright terms: Public domain | W3C validator |