| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4291 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 4165 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-in 3912 df-nul 4287 |
| This theorem is referenced by: 0in 4350 csbin 4395 res0 5938 dfpo2 6248 predprc 6290 fresaun 6699 oev2 8448 dju0en 10089 ackbij1lem13 10144 ackbij1lem16 10147 incexclem 15761 bitsinv1 16371 bitsinvp1 16378 sadcadd 16387 sadadd2 16389 sadid1 16397 bitsres 16402 smumullem 16421 ressbas 17165 sylow2a 19516 ablfac1eu 19972 indistopon 22904 fctop 22907 cctop 22909 rest0 23072 filconn 23786 volinun 25463 itg2cnlem2 25679 pthdlem2 29731 0pth 30087 1pthdlem2 30098 disjdifprg 32537 disjun0 32557 ofpreima2 32623 of0r 32635 ldgenpisyslem1 34132 0elcarsg 34277 carsgclctunlem1 34287 carsgclctunlem3 34290 ballotlemfval0 34466 sate0 35390 elima4 35751 bj-rest10 37064 bj-rest0 37069 mblfinlem2 37640 conrel1d 43639 conrel2d 43640 ntrk0kbimka 44015 clsneibex 44078 neicvgbex 44088 qinioo 45520 nnfoctbdjlem 46440 caragen0 46491 resinsnALT 48861 |
| Copyright terms: Public domain | W3C validator |