| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4297 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 4171 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-in 3918 df-nul 4293 |
| This theorem is referenced by: 0in 4356 csbin 4401 res0 5943 dfpo2 6257 predprc 6299 fresaun 6713 oev2 8464 dju0en 10105 ackbij1lem13 10160 ackbij1lem16 10163 incexclem 15778 bitsinv1 16388 bitsinvp1 16395 sadcadd 16404 sadadd2 16406 sadid1 16414 bitsres 16419 smumullem 16438 ressbas 17182 sylow2a 19525 ablfac1eu 19981 indistopon 22864 fctop 22867 cctop 22869 rest0 23032 filconn 23746 volinun 25423 itg2cnlem2 25639 pthdlem2 29671 0pth 30027 1pthdlem2 30038 disjdifprg 32477 disjun0 32497 ofpreima2 32563 of0r 32575 ldgenpisyslem1 34126 0elcarsg 34271 carsgclctunlem1 34281 carsgclctunlem3 34284 ballotlemfval0 34460 sate0 35375 elima4 35736 bj-rest10 37049 bj-rest0 37054 mblfinlem2 37625 conrel1d 43625 conrel2d 43626 ntrk0kbimka 44001 clsneibex 44064 neicvgbex 44074 qinioo 45506 nnfoctbdjlem 46426 caragen0 46477 resinsnALT 48834 |
| Copyright terms: Public domain | W3C validator |