| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 4175 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-in 3921 df-nul 4297 |
| This theorem is referenced by: 0in 4360 csbin 4405 res0 5954 dfpo2 6269 predprc 6311 fresaun 6731 oev2 8487 dju0en 10129 ackbij1lem13 10184 ackbij1lem16 10187 incexclem 15802 bitsinv1 16412 bitsinvp1 16419 sadcadd 16428 sadadd2 16430 sadid1 16438 bitsres 16443 smumullem 16462 ressbas 17206 sylow2a 19549 ablfac1eu 20005 indistopon 22888 fctop 22891 cctop 22893 rest0 23056 filconn 23770 volinun 25447 itg2cnlem2 25663 pthdlem2 29698 0pth 30054 1pthdlem2 30065 disjdifprg 32504 disjun0 32524 ofpreima2 32590 of0r 32602 ldgenpisyslem1 34153 0elcarsg 34298 carsgclctunlem1 34308 carsgclctunlem3 34311 ballotlemfval0 34487 sate0 35402 elima4 35763 bj-rest10 37076 bj-rest0 37081 mblfinlem2 37652 conrel1d 43652 conrel2d 43653 ntrk0kbimka 44028 clsneibex 44091 neicvgbex 44101 qinioo 45533 nnfoctbdjlem 46453 caragen0 46504 resinsnALT 48861 |
| Copyright terms: Public domain | W3C validator |