| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4283 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 4157 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ∅c0 4278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-in 3904 df-nul 4279 |
| This theorem is referenced by: 0in 4342 csbin 4387 res0 5927 dfpo2 6238 predprc 6280 fresaun 6689 oev2 8433 dju0en 10062 ackbij1lem13 10117 ackbij1lem16 10120 incexclem 15738 bitsinv1 16348 bitsinvp1 16355 sadcadd 16364 sadadd2 16366 sadid1 16374 bitsres 16379 smumullem 16398 ressbas 17142 sylow2a 19526 ablfac1eu 19982 indistopon 22911 fctop 22914 cctop 22916 rest0 23079 filconn 23793 volinun 25469 itg2cnlem2 25685 pthdlem2 29741 0pth 30097 1pthdlem2 30108 disjdifprg 32547 disjun0 32567 ofpreima2 32640 of0r 32652 ldgenpisyslem1 34168 0elcarsg 34312 carsgclctunlem1 34322 carsgclctunlem3 34325 ballotlemfval0 34501 sate0 35451 elima4 35812 bj-rest10 37122 bj-rest0 37127 mblfinlem2 37698 conrel1d 43696 conrel2d 43697 ntrk0kbimka 44072 clsneibex 44135 neicvgbex 44145 qinioo 45575 nnfoctbdjlem 46493 caragen0 46544 resinsnALT 48904 |
| Copyright terms: Public domain | W3C validator |