![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version |
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 224 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
4 | 3 | ineqri 4233 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 |
This theorem is referenced by: 0in 4420 csbin 4465 res0 6013 dfpo2 6327 predprc 6370 fresaun 6792 oev2 8579 dju0en 10245 ackbij1lem13 10300 ackbij1lem16 10303 incexclem 15884 bitsinv1 16488 bitsinvp1 16495 sadcadd 16504 sadadd2 16506 sadid1 16514 bitsres 16519 smumullem 16538 ressbas 17293 ressbasOLD 17294 sylow2a 19661 ablfac1eu 20117 indistopon 23029 fctop 23032 cctop 23034 rest0 23198 filconn 23912 volinun 25600 itg2cnlem2 25817 pthdlem2 29804 0pth 30157 1pthdlem2 30168 disjdifprg 32597 disjun0 32617 ofpreima2 32684 of0r 32696 ldgenpisyslem1 34127 0elcarsg 34272 carsgclctunlem1 34282 carsgclctunlem3 34285 ballotlemfval0 34460 sate0 35383 elima4 35739 bj-rest10 37054 bj-rest0 37059 mblfinlem2 37618 conrel1d 43625 conrel2d 43626 ntrk0kbimka 44001 clsneibex 44064 neicvgbex 44074 qinioo 45453 nnfoctbdjlem 46376 caragen0 46427 |
Copyright terms: Public domain | W3C validator |