![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version |
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4331 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bianfi 533 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 223 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
4 | 3 | ineqri 4204 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-dif 3950 df-in 3954 df-nul 4324 |
This theorem is referenced by: 0in 4394 csbin 4440 res0 5989 dfpo2 6300 predprc 6344 fresaun 6768 oev2 8543 dju0en 10198 ackbij1lem13 10255 ackbij1lem16 10258 incexclem 15814 bitsinv1 16416 bitsinvp1 16423 sadcadd 16432 sadadd2 16434 sadid1 16442 bitsres 16447 smumullem 16466 ressbas 17214 ressbasOLD 17215 sylow2a 19573 ablfac1eu 20029 indistopon 22903 fctop 22906 cctop 22908 rest0 23072 filconn 23786 volinun 25474 itg2cnlem2 25691 pthdlem2 29581 0pth 29934 1pthdlem2 29945 disjdifprg 32364 disjun0 32384 ofpreima2 32451 ldgenpisyslem1 33782 0elcarsg 33927 carsgclctunlem1 33937 carsgclctunlem3 33940 ballotlemfval0 34115 sate0 35025 elima4 35371 bj-rest10 36567 bj-rest0 36572 mblfinlem2 37131 conrel1d 43093 conrel2d 43094 ntrk0kbimka 43469 clsneibex 43532 neicvgbex 43542 qinioo 44920 nnfoctbdjlem 45843 caragen0 45894 |
Copyright terms: Public domain | W3C validator |