Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inixp Structured version   Visualization version   GIF version

Theorem inixp 35446
 Description: Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
inixp (X𝑥𝐴 𝐵X𝑥𝐴 𝐶) = X𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem inixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 an4 655 . . . 4 (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ ((𝑓 Fn 𝐴𝑓 Fn 𝐴) ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
2 anidm 568 . . . . 5 ((𝑓 Fn 𝐴𝑓 Fn 𝐴) ↔ 𝑓 Fn 𝐴)
3 r19.26 3101 . . . . . 6 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
4 elin 3874 . . . . . . . 8 ((𝑓𝑥) ∈ (𝐵𝐶) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
54bicomi 227 . . . . . . 7 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ (𝑓𝑥) ∈ (𝐵𝐶))
65ralbii 3097 . . . . . 6 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶))
73, 6bitr3i 280 . . . . 5 ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶))
82, 7anbi12i 629 . . . 4 (((𝑓 Fn 𝐴𝑓 Fn 𝐴) ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
91, 8bitri 278 . . 3 (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
10 vex 3413 . . . . 5 𝑓 ∈ V
1110elixp 8486 . . . 4 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1210elixp 8486 . . . 4 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
1311, 12anbi12i 629 . . 3 ((𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
1410elixp 8486 . . 3 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
159, 13, 143bitr4i 306 . 2 ((𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶) ↔ 𝑓X𝑥𝐴 (𝐵𝐶))
1615ineqri 4108 1 (X𝑥𝐴 𝐵X𝑥𝐴 𝐶) = X𝑥𝐴 (𝐵𝐶)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070   ∩ cin 3857   Fn wfn 6330  ‘cfv 6335  Xcixp 8479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-v 3411  df-un 3863  df-in 3865  df-ss 3875  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fn 6338  df-fv 6343  df-ixp 8480 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator