Step | Hyp | Ref
| Expression |
1 | | an4 655 |
. . . 4
⊢ (((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) ↔ ((𝑓 Fn 𝐴 ∧ 𝑓 Fn 𝐴) ∧ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶))) |
2 | | anidm 568 |
. . . . 5
⊢ ((𝑓 Fn 𝐴 ∧ 𝑓 Fn 𝐴) ↔ 𝑓 Fn 𝐴) |
3 | | r19.26 3101 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑓‘𝑥) ∈ 𝐶) ↔ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) |
4 | | elin 3874 |
. . . . . . . 8
⊢ ((𝑓‘𝑥) ∈ (𝐵 ∩ 𝐶) ↔ ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑓‘𝑥) ∈ 𝐶)) |
5 | 4 | bicomi 227 |
. . . . . . 7
⊢ (((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑓‘𝑥) ∈ 𝐶) ↔ (𝑓‘𝑥) ∈ (𝐵 ∩ 𝐶)) |
6 | 5 | ralbii 3097 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑓‘𝑥) ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ (𝐵 ∩ 𝐶)) |
7 | 3, 6 | bitr3i 280 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ (𝐵 ∩ 𝐶)) |
8 | 2, 7 | anbi12i 629 |
. . . 4
⊢ (((𝑓 Fn 𝐴 ∧ 𝑓 Fn 𝐴) ∧ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ (𝐵 ∩ 𝐶))) |
9 | 1, 8 | bitri 278 |
. . 3
⊢ (((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ (𝐵 ∩ 𝐶))) |
10 | | vex 3413 |
. . . . 5
⊢ 𝑓 ∈ V |
11 | 10 | elixp 8486 |
. . . 4
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
12 | 10 | elixp 8486 |
. . . 4
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)) |
13 | 11, 12 | anbi12i 629 |
. . 3
⊢ ((𝑓 ∈ X𝑥 ∈
𝐴 𝐵 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐶) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶))) |
14 | 10 | elixp 8486 |
. . 3
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 (𝐵 ∩ 𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ (𝐵 ∩ 𝐶))) |
15 | 9, 13, 14 | 3bitr4i 306 |
. 2
⊢ ((𝑓 ∈ X𝑥 ∈
𝐴 𝐵 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐶) ↔ 𝑓 ∈ X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶)) |
16 | 15 | ineqri 4108 |
1
⊢ (X𝑥 ∈
𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) = X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) |