MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfres3 Structured version   Visualization version   GIF version

Theorem dfres3 5955
Description: Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfres3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴))

Proof of Theorem dfres3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-res 5650 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 eleq1 2816 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
3 vex 3451 . . . . . . . . . . . 12 𝑧 ∈ V
43biantru 529 . . . . . . . . . . 11 (𝑦𝐵 ↔ (𝑦𝐵𝑧 ∈ V))
5 vex 3451 . . . . . . . . . . . . 13 𝑦 ∈ V
65, 3opelrn 5907 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ 𝐴𝑧 ∈ ran 𝐴)
76biantrud 531 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ 𝐴 → (𝑦𝐵 ↔ (𝑦𝐵𝑧 ∈ ran 𝐴)))
84, 7bitr3id 285 . . . . . . . . . 10 (⟨𝑦, 𝑧⟩ ∈ 𝐴 → ((𝑦𝐵𝑧 ∈ V) ↔ (𝑦𝐵𝑧 ∈ ran 𝐴)))
92, 8biimtrdi 253 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 → ((𝑦𝐵𝑧 ∈ V) ↔ (𝑦𝐵𝑧 ∈ ran 𝐴))))
109com12 32 . . . . . . . 8 (𝑥𝐴 → (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐵𝑧 ∈ V) ↔ (𝑦𝐵𝑧 ∈ ran 𝐴))))
1110pm5.32d 577 . . . . . . 7 (𝑥𝐴 → ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ V)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ ran 𝐴))))
12112exbidv 1924 . . . . . 6 (𝑥𝐴 → (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ V)) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ ran 𝐴))))
13 elxp 5661 . . . . . 6 (𝑥 ∈ (𝐵 × V) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ V)))
14 elxp 5661 . . . . . 6 (𝑥 ∈ (𝐵 × ran 𝐴) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ ran 𝐴)))
1512, 13, 143bitr4g 314 . . . . 5 (𝑥𝐴 → (𝑥 ∈ (𝐵 × V) ↔ 𝑥 ∈ (𝐵 × ran 𝐴)))
1615pm5.32i 574 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵 × V)) ↔ (𝑥𝐴𝑥 ∈ (𝐵 × ran 𝐴)))
17 elin 3930 . . . 4 (𝑥 ∈ (𝐴 ∩ (𝐵 × ran 𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵 × ran 𝐴)))
1816, 17bitr4i 278 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵 × V)) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 × ran 𝐴)))
1918ineqri 4175 . 2 (𝐴 ∩ (𝐵 × V)) = (𝐴 ∩ (𝐵 × ran 𝐴))
201, 19eqtri 2752 1 (𝐴𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cin 3913  cop 4595   × cxp 5636  ran crn 5639  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  brrestrict  35937  dfrel6  38329
  Copyright terms: Public domain W3C validator