MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsres Structured version   Visualization version   GIF version

Theorem bitsres 16032
Description: Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsres ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))

Proof of Theorem bitsres
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 11903 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
4 simpr 488 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 13812 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
61, 5zmodcld 13465 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
76nn0zd 12280 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℤ)
87znegcld 12284 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℤ)
9 sadadd 16026 . . 3 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
108, 1, 9syl2anc 587 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
11 sadadd 16026 . . . . . 6 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ (𝐴 mod (2↑𝑁)) ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
128, 7, 11syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
138zcnd 12283 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℂ)
147zcnd 12283 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
1513, 14addcomd 11034 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))))
1614negidd 11179 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))) = 0)
1715, 16eqtrd 2777 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = 0)
1817fveq2d 6721 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = (bits‘0))
19 0bits 15998 . . . . . 6 (bits‘0) = ∅
2018, 19eqtrdi 2794 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = ∅)
2112, 20eqtrd 2777 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = ∅)
2221oveq1d 7228 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
23 bitsss 15985 . . . . 5 (bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0
24 bitsss 15985 . . . . 5 (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0
25 inss1 4143 . . . . . 6 ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ (bits‘𝐴)
26 bitsss 15985 . . . . . . 7 (bits‘𝐴) ⊆ ℕ0
2726a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
2825, 27sstrid 3912 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0)
29 sadass 16030 . . . . 5 (((bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
3023, 24, 28, 29mp3an12i 1467 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
31 bitsmod 15995 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
3231oveq1d 7228 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
33 inss1 4143 . . . . . . . . . 10 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
3433, 27sstrid 3912 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0)
35 fzouzdisj 13278 . . . . . . . . . . . 12 ((0..^𝑁) ∩ (ℤ𝑁)) = ∅
3635ineq2i 4124 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ∅)
37 inindi 4141 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁)))
38 in0 4306 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ∅) = ∅
3936, 37, 383eqtr3i 2773 . . . . . . . . . 10 (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅
4039a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅)
4134, 28, 40saddisj 16024 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁))))
42 indi 4188 . . . . . . . 8 ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁)))
4341, 42eqtr4di 2796 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))))
44 nn0uz 12476 . . . . . . . . . 10 0 = (ℤ‘0)
454, 44eleqtrdi 2848 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
46 fzouzsplit 13277 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4745, 46syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4844, 47syl5eq 2790 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ℕ0 = ((0..^𝑁) ∪ (ℤ𝑁)))
4926, 48sseqtrid 3953 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)))
50 df-ss 3883 . . . . . . . 8 ((bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)) ↔ ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5149, 50sylib 221 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5243, 51eqtrd 2777 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5332, 52eqtrd 2777 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5453oveq2d 7229 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
5530, 54eqtrd 2777 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
56 sadid2 16028 . . . 4 (((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0 → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5728, 56syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5822, 55, 573eqtr3d 2785 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = ((bits‘𝐴) ∩ (ℤ𝑁)))
591zcnd 12283 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
6013, 59addcomd 11034 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = (𝐴 + -(𝐴 mod (2↑𝑁))))
6159, 14negsubd 11195 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = (𝐴 − (𝐴 mod (2↑𝑁))))
6259, 14subcld 11189 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 − (𝐴 mod (2↑𝑁))) ∈ ℂ)
635nncnd 11846 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
645nnne0d 11880 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
6562, 63, 64divcan1d 11609 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = (𝐴 − (𝐴 mod (2↑𝑁))))
661zred 12282 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
675nnrpd 12626 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
68 moddiffl 13455 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
6966, 67, 68syl2anc 587 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
7069oveq1d 7228 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7161, 65, 703eqtr2d 2783 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7260, 71eqtrd 2777 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7372fveq2d 6721 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
7410, 58, 733eqtr3d 2785 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cun 3864  cin 3865  wss 3866  c0 4237  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729   + caddc 10732   · cmul 10734  cmin 11062  -cneg 11063   / cdiv 11489  cn 11830  2c2 11885  0cn0 12090  cz 12176  cuz 12438  +crp 12586  ..^cfzo 13238  cfl 13365   mod cmo 13442  cexp 13635  bitscbits 15978   sadd csad 15979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-had 1600  df-cad 1614  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-dvds 15816  df-bits 15981  df-sad 16010
This theorem is referenced by:  bitsuz  16033
  Copyright terms: Public domain W3C validator