MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsres Structured version   Visualization version   GIF version

Theorem bitsres 15810
Description: Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsres ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))

Proof of Theorem bitsres
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 11698 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
4 simpr 485 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 13594 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
61, 5zmodcld 13248 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
76nn0zd 12073 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℤ)
87znegcld 12077 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℤ)
9 sadadd 15804 . . 3 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
108, 1, 9syl2anc 584 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
11 sadadd 15804 . . . . . 6 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ (𝐴 mod (2↑𝑁)) ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
128, 7, 11syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
138zcnd 12076 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℂ)
147zcnd 12076 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
1513, 14addcomd 10830 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))))
1614negidd 10975 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))) = 0)
1715, 16eqtrd 2853 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = 0)
1817fveq2d 6667 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = (bits‘0))
19 0bits 15776 . . . . . 6 (bits‘0) = ∅
2018, 19syl6eq 2869 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = ∅)
2112, 20eqtrd 2853 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = ∅)
2221oveq1d 7160 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
23 bitsss 15763 . . . . 5 (bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0
24 bitsss 15763 . . . . 5 (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0
25 inss1 4202 . . . . . 6 ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ (bits‘𝐴)
26 bitsss 15763 . . . . . . 7 (bits‘𝐴) ⊆ ℕ0
2726a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
2825, 27sstrid 3975 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0)
29 sadass 15808 . . . . 5 (((bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
3023, 24, 28, 29mp3an12i 1456 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
31 bitsmod 15773 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
3231oveq1d 7160 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
33 inss1 4202 . . . . . . . . . 10 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
3433, 27sstrid 3975 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0)
35 fzouzdisj 13061 . . . . . . . . . . . 12 ((0..^𝑁) ∩ (ℤ𝑁)) = ∅
3635ineq2i 4183 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ∅)
37 inindi 4200 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁)))
38 in0 4342 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ∅) = ∅
3936, 37, 383eqtr3i 2849 . . . . . . . . . 10 (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅
4039a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅)
4134, 28, 40saddisj 15802 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁))))
42 indi 4247 . . . . . . . 8 ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁)))
4341, 42syl6eqr 2871 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))))
44 nn0uz 12268 . . . . . . . . . 10 0 = (ℤ‘0)
454, 44eleqtrdi 2920 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
46 fzouzsplit 13060 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4745, 46syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4844, 47syl5eq 2865 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ℕ0 = ((0..^𝑁) ∪ (ℤ𝑁)))
4926, 48sseqtrid 4016 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)))
50 df-ss 3949 . . . . . . . 8 ((bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)) ↔ ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5149, 50sylib 219 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5243, 51eqtrd 2853 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5332, 52eqtrd 2853 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5453oveq2d 7161 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
5530, 54eqtrd 2853 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
56 sadid2 15806 . . . 4 (((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0 → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5728, 56syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5822, 55, 573eqtr3d 2861 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = ((bits‘𝐴) ∩ (ℤ𝑁)))
591zcnd 12076 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
6013, 59addcomd 10830 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = (𝐴 + -(𝐴 mod (2↑𝑁))))
6159, 14negsubd 10991 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = (𝐴 − (𝐴 mod (2↑𝑁))))
6259, 14subcld 10985 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 − (𝐴 mod (2↑𝑁))) ∈ ℂ)
635nncnd 11642 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
645nnne0d 11675 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
6562, 63, 64divcan1d 11405 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = (𝐴 − (𝐴 mod (2↑𝑁))))
661zred 12075 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
675nnrpd 12417 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
68 moddiffl 13238 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
6966, 67, 68syl2anc 584 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
7069oveq1d 7160 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7161, 65, 703eqtr2d 2859 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7260, 71eqtrd 2853 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7372fveq2d 6667 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
7410, 58, 733eqtr3d 2861 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cun 3931  cin 3932  wss 3933  c0 4288  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525   + caddc 10528   · cmul 10530  cmin 10858  -cneg 10859   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ..^cfzo 13021  cfl 13148   mod cmo 13225  cexp 13417  bitscbits 15756   sadd csad 15757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-xor 1496  df-tru 1531  df-fal 1541  df-had 1585  df-cad 1599  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-dvds 15596  df-bits 15759  df-sad 15788
This theorem is referenced by:  bitsuz  15811
  Copyright terms: Public domain W3C validator