MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsres Structured version   Visualization version   GIF version

Theorem bitsres 16466
Description: Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsres ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))

Proof of Theorem bitsres
StepHypRef Expression
1 simpl 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 12329 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
4 simpr 483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 14255 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
61, 5zmodcld 13904 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
76nn0zd 12628 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℤ)
87znegcld 12712 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℤ)
9 sadadd 16460 . . 3 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
108, 1, 9syl2anc 582 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
11 sadadd 16460 . . . . . 6 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ (𝐴 mod (2↑𝑁)) ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
128, 7, 11syl2anc 582 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
138zcnd 12711 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℂ)
147zcnd 12711 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
1513, 14addcomd 11455 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))))
1614negidd 11600 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))) = 0)
1715, 16eqtrd 2766 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = 0)
1817fveq2d 6895 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = (bits‘0))
19 0bits 16432 . . . . . 6 (bits‘0) = ∅
2018, 19eqtrdi 2782 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = ∅)
2112, 20eqtrd 2766 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = ∅)
2221oveq1d 7429 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
23 bitsss 16419 . . . . 5 (bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0
24 bitsss 16419 . . . . 5 (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0
25 inss1 4228 . . . . . 6 ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ (bits‘𝐴)
26 bitsss 16419 . . . . . . 7 (bits‘𝐴) ⊆ ℕ0
2726a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
2825, 27sstrid 3991 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0)
29 sadass 16464 . . . . 5 (((bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
3023, 24, 28, 29mp3an12i 1462 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
31 bitsmod 16429 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
3231oveq1d 7429 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
33 inss1 4228 . . . . . . . . . 10 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
3433, 27sstrid 3991 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0)
35 fzouzdisj 13714 . . . . . . . . . . . 12 ((0..^𝑁) ∩ (ℤ𝑁)) = ∅
3635ineq2i 4208 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ∅)
37 inindi 4226 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁)))
38 in0 4390 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ∅) = ∅
3936, 37, 383eqtr3i 2762 . . . . . . . . . 10 (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅
4039a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅)
4134, 28, 40saddisj 16458 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁))))
42 indi 4273 . . . . . . . 8 ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁)))
4341, 42eqtr4di 2784 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))))
44 nn0uz 12908 . . . . . . . . . 10 0 = (ℤ‘0)
454, 44eleqtrdi 2836 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
46 fzouzsplit 13713 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4745, 46syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4844, 47eqtrid 2778 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ℕ0 = ((0..^𝑁) ∪ (ℤ𝑁)))
4926, 48sseqtrid 4032 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)))
50 dfss2 3965 . . . . . . . 8 ((bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)) ↔ ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5149, 50sylib 217 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5243, 51eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5332, 52eqtrd 2766 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5453oveq2d 7430 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
5530, 54eqtrd 2766 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
56 sadid2 16462 . . . 4 (((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0 → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5728, 56syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5822, 55, 573eqtr3d 2774 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = ((bits‘𝐴) ∩ (ℤ𝑁)))
591zcnd 12711 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
6013, 59addcomd 11455 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = (𝐴 + -(𝐴 mod (2↑𝑁))))
6159, 14negsubd 11616 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = (𝐴 − (𝐴 mod (2↑𝑁))))
6259, 14subcld 11610 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 − (𝐴 mod (2↑𝑁))) ∈ ℂ)
635nncnd 12272 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
645nnne0d 12306 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
6562, 63, 64divcan1d 12034 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = (𝐴 − (𝐴 mod (2↑𝑁))))
661zred 12710 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
675nnrpd 13060 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
68 moddiffl 13894 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
6966, 67, 68syl2anc 582 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
7069oveq1d 7429 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7161, 65, 703eqtr2d 2772 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7260, 71eqtrd 2766 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7372fveq2d 6895 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
7410, 58, 733eqtr3d 2774 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cun 3945  cin 3946  wss 3947  c0 4323  cfv 6544  (class class class)co 7414  cr 11146  0cc0 11147   + caddc 11150   · cmul 11152  cmin 11483  -cneg 11484   / cdiv 11910  cn 12256  2c2 12311  0cn0 12516  cz 12602  cuz 12866  +crp 13020  ..^cfzo 13673  cfl 13802   mod cmo 13881  cexp 14073  bitscbits 16412   sadd csad 16413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-had 1588  df-cad 1601  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-disj 5112  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9476  df-inf 9477  df-oi 9544  df-dju 9935  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-n0 12517  df-xnn0 12589  df-z 12603  df-uz 12867  df-rp 13021  df-fz 13531  df-fzo 13674  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-hash 14341  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-clim 15483  df-sum 15684  df-dvds 16250  df-bits 16415  df-sad 16444
This theorem is referenced by:  bitsuz  16467
  Copyright terms: Public domain W3C validator