Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinvp1 Structured version   Visualization version   GIF version

Theorem bitsinvp1 15790
 Description: Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypothesis
Ref Expression
bitsinv.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
bitsinvp1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))

Proof of Theorem bitsinvp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzonel 13048 . . . . . . 7 ¬ 𝑁 ∈ (0..^𝑁)
21a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ¬ 𝑁 ∈ (0..^𝑁))
3 disjsn 4607 . . . . . 6 (((0..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (0..^𝑁))
42, 3sylibr 237 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) ∩ {𝑁}) = ∅)
54ineq2d 4139 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = (𝐴 ∩ ∅))
6 inindi 4153 . . . 4 (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁}))
7 in0 4299 . . . 4 (𝐴 ∩ ∅) = ∅
85, 6, 73eqtr3g 2856 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁})) = ∅)
9 simpr 488 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 nn0uz 12270 . . . . . . 7 0 = (ℤ‘0)
119, 10eleqtrdi 2900 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
12 fzosplitsn 13142 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1311, 12syl 17 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1413ineq2d 4139 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})))
15 indi 4200 . . . 4 (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁}))
1614, 15eqtrdi 2849 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁})))
17 fzofi 13339 . . . . 5 (0..^(𝑁 + 1)) ∈ Fin
1817a1i 11 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) ∈ Fin)
19 inss2 4156 . . . 4 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))
20 ssfi 8724 . . . 4 (((0..^(𝑁 + 1)) ∈ Fin ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
2118, 19, 20sylancl 589 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
22 2nn 11700 . . . . . 6 2 ∈ ℕ
2322a1i 11 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 2 ∈ ℕ)
24 inss1 4155 . . . . . . 7 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ 𝐴
25 simpl 486 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
2624, 25sstrid 3926 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
2726sselda 3915 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
2823, 27nnexpcld 13604 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℕ)
2928nncnd 11643 . . 3 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℂ)
308, 16, 21, 29fsumsplit 15091 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
31 elfpw 8812 . . . 4 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin))
3226, 21, 31sylanbrc 586 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin))
33 bitsinv.k . . . 4 𝐾 = (bits ↾ ℕ0)
3433bitsinv 15789 . . 3 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
3532, 34syl 17 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
36 inss1 4155 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
3736, 25sstrid 3926 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
38 fzofi 13339 . . . . . . 7 (0..^𝑁) ∈ Fin
3938a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
40 inss2 4156 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
41 ssfi 8724 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4239, 40, 41sylancl 589 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
43 elfpw 8812 . . . . 5 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4437, 42, 43sylanbrc 586 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
4533bitsinv 15789 . . . 4 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
4644, 45syl 17 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
47 snssi 4701 . . . . . . . 8 (𝑁𝐴 → {𝑁} ⊆ 𝐴)
4847adantl 485 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → {𝑁} ⊆ 𝐴)
49 sseqin2 4142 . . . . . . 7 ({𝑁} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑁}) = {𝑁})
5048, 49sylib 221 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = {𝑁})
5150sumeq1d 15052 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ {𝑁} (2↑𝑘))
52 simpr 488 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁𝐴)
5322a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 2 ∈ ℕ)
54 simplr 768 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁 ∈ ℕ0)
5553, 54nnexpcld 13604 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℕ)
5655nncnd 11643 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℂ)
57 oveq2 7143 . . . . . . 7 (𝑘 = 𝑁 → (2↑𝑘) = (2↑𝑁))
5857sumsn 15095 . . . . . 6 ((𝑁𝐴 ∧ (2↑𝑁) ∈ ℂ) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
5952, 56, 58syl2anc 587 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
6051, 59eqtr2d 2834 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
61 simpr 488 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → ¬ 𝑁𝐴)
62 disjsn 4607 . . . . . . 7 ((𝐴 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁𝐴)
6361, 62sylibr 237 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = ∅)
6463sumeq1d 15052 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ ∅ (2↑𝑘))
65 sum0 15072 . . . . 5 Σ𝑘 ∈ ∅ (2↑𝑘) = 0
6664, 65eqtr2di 2850 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → 0 = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6760, 66ifeqda 4460 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6846, 67oveq12d 7153 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
6930, 35, 683eqtr4d 2843 1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525  ◡ccnv 5518   ↾ cres 5521  ‘cfv 6324  (class class class)co 7135  Fincfn 8494  ℂcc 10526  0cc0 10528  1c1 10529   + caddc 10531  ℕcn 11627  2c2 11682  ℕ0cn0 11887  ℤ≥cuz 12233  ..^cfzo 13030  ↑cexp 13427  Σcsu 15036  bitscbits 15760 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-n0 11888  df-xnn0 11958  df-z 11972  df-uz 12234  df-rp 12380  df-fz 12888  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602  df-bits 15763 This theorem is referenced by:  sadcaddlem  15798  sadadd2lem  15800
 Copyright terms: Public domain W3C validator