MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinvp1 Structured version   Visualization version   GIF version

Theorem bitsinvp1 16329
Description: Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypothesis
Ref Expression
bitsinv.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
bitsinvp1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))

Proof of Theorem bitsinvp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzonel 13586 . . . . . . 7 ¬ 𝑁 ∈ (0..^𝑁)
21a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ¬ 𝑁 ∈ (0..^𝑁))
3 disjsn 4672 . . . . . 6 (((0..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (0..^𝑁))
42, 3sylibr 233 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) ∩ {𝑁}) = ∅)
54ineq2d 4172 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = (𝐴 ∩ ∅))
6 inindi 4186 . . . 4 (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁}))
7 in0 4351 . . . 4 (𝐴 ∩ ∅) = ∅
85, 6, 73eqtr3g 2799 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁})) = ∅)
9 simpr 485 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 nn0uz 12805 . . . . . . 7 0 = (ℤ‘0)
119, 10eleqtrdi 2848 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
12 fzosplitsn 13680 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1311, 12syl 17 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1413ineq2d 4172 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})))
15 indi 4233 . . . 4 (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁}))
1614, 15eqtrdi 2792 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁})))
17 fzofi 13879 . . . . 5 (0..^(𝑁 + 1)) ∈ Fin
1817a1i 11 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) ∈ Fin)
19 inss2 4189 . . . 4 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))
20 ssfi 9117 . . . 4 (((0..^(𝑁 + 1)) ∈ Fin ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
2118, 19, 20sylancl 586 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
22 2nn 12226 . . . . . 6 2 ∈ ℕ
2322a1i 11 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 2 ∈ ℕ)
24 inss1 4188 . . . . . . 7 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ 𝐴
25 simpl 483 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
2624, 25sstrid 3955 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
2726sselda 3944 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
2823, 27nnexpcld 14148 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℕ)
2928nncnd 12169 . . 3 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℂ)
308, 16, 21, 29fsumsplit 15626 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
31 elfpw 9298 . . . 4 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin))
3226, 21, 31sylanbrc 583 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin))
33 bitsinv.k . . . 4 𝐾 = (bits ↾ ℕ0)
3433bitsinv 16328 . . 3 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
3532, 34syl 17 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
36 inss1 4188 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
3736, 25sstrid 3955 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
38 fzofi 13879 . . . . . . 7 (0..^𝑁) ∈ Fin
3938a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
40 inss2 4189 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
41 ssfi 9117 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4239, 40, 41sylancl 586 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
43 elfpw 9298 . . . . 5 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4437, 42, 43sylanbrc 583 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
4533bitsinv 16328 . . . 4 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
4644, 45syl 17 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
47 snssi 4768 . . . . . . . 8 (𝑁𝐴 → {𝑁} ⊆ 𝐴)
4847adantl 482 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → {𝑁} ⊆ 𝐴)
49 sseqin2 4175 . . . . . . 7 ({𝑁} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑁}) = {𝑁})
5048, 49sylib 217 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = {𝑁})
5150sumeq1d 15586 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ {𝑁} (2↑𝑘))
52 simpr 485 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁𝐴)
5322a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 2 ∈ ℕ)
54 simplr 767 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁 ∈ ℕ0)
5553, 54nnexpcld 14148 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℕ)
5655nncnd 12169 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℂ)
57 oveq2 7365 . . . . . . 7 (𝑘 = 𝑁 → (2↑𝑘) = (2↑𝑁))
5857sumsn 15631 . . . . . 6 ((𝑁𝐴 ∧ (2↑𝑁) ∈ ℂ) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
5952, 56, 58syl2anc 584 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
6051, 59eqtr2d 2777 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
61 simpr 485 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → ¬ 𝑁𝐴)
62 disjsn 4672 . . . . . . 7 ((𝐴 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁𝐴)
6361, 62sylibr 233 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = ∅)
6463sumeq1d 15586 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ ∅ (2↑𝑘))
65 sum0 15606 . . . . 5 Σ𝑘 ∈ ∅ (2↑𝑘) = 0
6664, 65eqtr2di 2793 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → 0 = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6760, 66ifeqda 4522 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6846, 67oveq12d 7375 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
6930, 35, 683eqtr4d 2786 1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560  {csn 4586  ccnv 5632  cres 5635  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  0cc0 11051  1c1 11052   + caddc 11054  cn 12153  2c2 12208  0cn0 12413  cuz 12763  ..^cfzo 13567  cexp 13967  Σcsu 15570  bitscbits 16299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-bits 16302
This theorem is referenced by:  sadcaddlem  16337  sadadd2lem  16339
  Copyright terms: Public domain W3C validator