| Step | Hyp | Ref
| Expression |
| 1 | | fzonel 13695 |
. . . . . . 7
⊢ ¬
𝑁 ∈ (0..^𝑁) |
| 2 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → ¬ 𝑁 ∈ (0..^𝑁)) |
| 3 | | disjsn 4692 |
. . . . . 6
⊢
(((0..^𝑁) ∩
{𝑁}) = ∅ ↔ ¬
𝑁 ∈ (0..^𝑁)) |
| 4 | 2, 3 | sylibr 234 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → ((0..^𝑁) ∩ {𝑁}) = ∅) |
| 5 | 4 | ineq2d 4200 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = (𝐴 ∩ ∅)) |
| 6 | | inindi 4215 |
. . . 4
⊢ (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁})) |
| 7 | | in0 4375 |
. . . 4
⊢ (𝐴 ∩ ∅) =
∅ |
| 8 | 5, 6, 7 | 3eqtr3g 2794 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁})) = ∅) |
| 9 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈
ℕ0) |
| 10 | | nn0uz 12899 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
| 11 | 9, 10 | eleqtrdi 2845 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈
(ℤ≥‘0)) |
| 12 | | fzosplitsn 13796 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 14 | 13 | ineq2d 4200 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = (𝐴 ∩ ((0..^𝑁) ∪ {𝑁}))) |
| 15 | | indi 4264 |
. . . 4
⊢ (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁})) |
| 16 | 14, 15 | eqtrdi 2787 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁}))) |
| 17 | | fzofi 13997 |
. . . . 5
⊢
(0..^(𝑁 + 1)) ∈
Fin |
| 18 | 17 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (0..^(𝑁 + 1)) ∈ Fin) |
| 19 | | inss2 4218 |
. . . 4
⊢ (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1)) |
| 20 | | ssfi 9192 |
. . . 4
⊢
(((0..^(𝑁 + 1))
∈ Fin ∧ (𝐴 ∩
(0..^(𝑁 + 1))) ⊆
(0..^(𝑁 + 1))) →
(𝐴 ∩ (0..^(𝑁 + 1))) ∈
Fin) |
| 21 | 18, 19, 20 | sylancl 586 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin) |
| 22 | | 2nn 12318 |
. . . . . 6
⊢ 2 ∈
ℕ |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 2 ∈
ℕ) |
| 24 | | inss1 4217 |
. . . . . . 7
⊢ (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ 𝐴 |
| 25 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝐴 ⊆
ℕ0) |
| 26 | 24, 25 | sstrid 3975 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ⊆
ℕ0) |
| 27 | 26 | sselda 3963 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0) |
| 28 | 23, 27 | nnexpcld 14268 |
. . . 4
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℕ) |
| 29 | 28 | nncnd 12261 |
. . 3
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℂ) |
| 30 | 8, 16, 21, 29 | fsumsplit 15762 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))) |
| 31 | | elfpw 9371 |
. . . 4
⊢ ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫
ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 ∧
(𝐴 ∩ (0..^(𝑁 + 1))) ∈
Fin)) |
| 32 | 26, 21, 31 | sylanbrc 583 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫
ℕ0 ∩ Fin)) |
| 33 | | bitsinv.k |
. . . 4
⊢ 𝐾 = ◡(bits ↾
ℕ0) |
| 34 | 33 | bitsinv 16472 |
. . 3
⊢ ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫
ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘)) |
| 35 | 32, 34 | syl 17 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘)) |
| 36 | | inss1 4217 |
. . . . . 6
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴 |
| 37 | 36, 25 | sstrid 3975 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^𝑁)) ⊆
ℕ0) |
| 38 | | fzofi 13997 |
. . . . . . 7
⊢
(0..^𝑁) ∈
Fin |
| 39 | 38 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (0..^𝑁) ∈ Fin) |
| 40 | | inss2 4218 |
. . . . . 6
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
| 41 | | ssfi 9192 |
. . . . . 6
⊢
(((0..^𝑁) ∈ Fin
∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin) |
| 42 | 39, 40, 41 | sylancl 586 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ Fin) |
| 43 | | elfpw 9371 |
. . . . 5
⊢ ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) ↔ ((𝐴 ∩
(0..^𝑁)) ⊆
ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin)) |
| 44 | 37, 42, 43 | sylanbrc 583 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin)) |
| 45 | 33 | bitsinv 16472 |
. . . 4
⊢ ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0
∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘)) |
| 46 | 44, 45 | syl 17 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘)) |
| 47 | | snssi 4789 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝐴 → {𝑁} ⊆ 𝐴) |
| 48 | 47 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → {𝑁} ⊆ 𝐴) |
| 49 | | sseqin2 4203 |
. . . . . . 7
⊢ ({𝑁} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑁}) = {𝑁}) |
| 50 | 48, 49 | sylib 218 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → (𝐴 ∩ {𝑁}) = {𝑁}) |
| 51 | 50 | sumeq1d 15721 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ {𝑁} (2↑𝑘)) |
| 52 | | simpr 484 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → 𝑁 ∈ 𝐴) |
| 53 | 22 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → 2 ∈ ℕ) |
| 54 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → 𝑁 ∈
ℕ0) |
| 55 | 53, 54 | nnexpcld 14268 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → (2↑𝑁) ∈ ℕ) |
| 56 | 55 | nncnd 12261 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → (2↑𝑁) ∈ ℂ) |
| 57 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (2↑𝑘) = (2↑𝑁)) |
| 58 | 57 | sumsn 15767 |
. . . . . 6
⊢ ((𝑁 ∈ 𝐴 ∧ (2↑𝑁) ∈ ℂ) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁)) |
| 59 | 52, 56, 58 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁)) |
| 60 | 51, 59 | eqtr2d 2772 |
. . . 4
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ∈ 𝐴) → (2↑𝑁) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)) |
| 61 | | simpr 484 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ ¬ 𝑁 ∈ 𝐴) → ¬ 𝑁 ∈ 𝐴) |
| 62 | | disjsn 4692 |
. . . . . . 7
⊢ ((𝐴 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ 𝐴) |
| 63 | 61, 62 | sylibr 234 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ ¬ 𝑁 ∈ 𝐴) → (𝐴 ∩ {𝑁}) = ∅) |
| 64 | 63 | sumeq1d 15721 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ ¬ 𝑁 ∈ 𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ ∅ (2↑𝑘)) |
| 65 | | sum0 15742 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (2↑𝑘) =
0 |
| 66 | 64, 65 | eqtr2di 2788 |
. . . 4
⊢ (((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ ¬ 𝑁 ∈ 𝐴) → 0 = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)) |
| 67 | 60, 66 | ifeqda 4542 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → if(𝑁 ∈ 𝐴, (2↑𝑁), 0) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)) |
| 68 | 46, 67 | oveq12d 7428 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0)) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))) |
| 69 | 30, 35, 68 | 3eqtr4d 2781 |
1
⊢ ((𝐴 ⊆ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0))) |