MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinvp1 Structured version   Visualization version   GIF version

Theorem bitsinvp1 16473
Description: Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypothesis
Ref Expression
bitsinv.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
bitsinvp1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))

Proof of Theorem bitsinvp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzonel 13695 . . . . . . 7 ¬ 𝑁 ∈ (0..^𝑁)
21a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ¬ 𝑁 ∈ (0..^𝑁))
3 disjsn 4692 . . . . . 6 (((0..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (0..^𝑁))
42, 3sylibr 234 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) ∩ {𝑁}) = ∅)
54ineq2d 4200 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = (𝐴 ∩ ∅))
6 inindi 4215 . . . 4 (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁}))
7 in0 4375 . . . 4 (𝐴 ∩ ∅) = ∅
85, 6, 73eqtr3g 2794 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁})) = ∅)
9 simpr 484 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 nn0uz 12899 . . . . . . 7 0 = (ℤ‘0)
119, 10eleqtrdi 2845 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
12 fzosplitsn 13796 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1311, 12syl 17 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1413ineq2d 4200 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})))
15 indi 4264 . . . 4 (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁}))
1614, 15eqtrdi 2787 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁})))
17 fzofi 13997 . . . . 5 (0..^(𝑁 + 1)) ∈ Fin
1817a1i 11 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) ∈ Fin)
19 inss2 4218 . . . 4 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))
20 ssfi 9192 . . . 4 (((0..^(𝑁 + 1)) ∈ Fin ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
2118, 19, 20sylancl 586 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
22 2nn 12318 . . . . . 6 2 ∈ ℕ
2322a1i 11 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 2 ∈ ℕ)
24 inss1 4217 . . . . . . 7 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ 𝐴
25 simpl 482 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
2624, 25sstrid 3975 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
2726sselda 3963 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
2823, 27nnexpcld 14268 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℕ)
2928nncnd 12261 . . 3 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℂ)
308, 16, 21, 29fsumsplit 15762 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
31 elfpw 9371 . . . 4 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin))
3226, 21, 31sylanbrc 583 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin))
33 bitsinv.k . . . 4 𝐾 = (bits ↾ ℕ0)
3433bitsinv 16472 . . 3 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
3532, 34syl 17 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
36 inss1 4217 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
3736, 25sstrid 3975 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
38 fzofi 13997 . . . . . . 7 (0..^𝑁) ∈ Fin
3938a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
40 inss2 4218 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
41 ssfi 9192 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4239, 40, 41sylancl 586 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
43 elfpw 9371 . . . . 5 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4437, 42, 43sylanbrc 583 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
4533bitsinv 16472 . . . 4 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
4644, 45syl 17 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
47 snssi 4789 . . . . . . . 8 (𝑁𝐴 → {𝑁} ⊆ 𝐴)
4847adantl 481 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → {𝑁} ⊆ 𝐴)
49 sseqin2 4203 . . . . . . 7 ({𝑁} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑁}) = {𝑁})
5048, 49sylib 218 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = {𝑁})
5150sumeq1d 15721 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ {𝑁} (2↑𝑘))
52 simpr 484 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁𝐴)
5322a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 2 ∈ ℕ)
54 simplr 768 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁 ∈ ℕ0)
5553, 54nnexpcld 14268 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℕ)
5655nncnd 12261 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℂ)
57 oveq2 7418 . . . . . . 7 (𝑘 = 𝑁 → (2↑𝑘) = (2↑𝑁))
5857sumsn 15767 . . . . . 6 ((𝑁𝐴 ∧ (2↑𝑁) ∈ ℂ) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
5952, 56, 58syl2anc 584 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
6051, 59eqtr2d 2772 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
61 simpr 484 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → ¬ 𝑁𝐴)
62 disjsn 4692 . . . . . . 7 ((𝐴 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁𝐴)
6361, 62sylibr 234 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = ∅)
6463sumeq1d 15721 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ ∅ (2↑𝑘))
65 sum0 15742 . . . . 5 Σ𝑘 ∈ ∅ (2↑𝑘) = 0
6664, 65eqtr2di 2788 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → 0 = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6760, 66ifeqda 4542 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6846, 67oveq12d 7428 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
6930, 35, 683eqtr4d 2781 1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3929  cin 3930  wss 3931  c0 4313  ifcif 4505  𝒫 cpw 4580  {csn 4606  ccnv 5658  cres 5661  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  0cc0 11134  1c1 11135   + caddc 11137  cn 12245  2c2 12300  0cn0 12506  cuz 12857  ..^cfzo 13676  cexp 14084  Σcsu 15707  bitscbits 16443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-bits 16446
This theorem is referenced by:  sadcaddlem  16481  sadadd2lem  16483
  Copyright terms: Public domain W3C validator