MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinvp1 Structured version   Visualization version   GIF version

Theorem bitsinvp1 16340
Description: Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypothesis
Ref Expression
bitsinv.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
bitsinvp1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))

Proof of Theorem bitsinvp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzonel 13596 . . . . . . 7 ¬ 𝑁 ∈ (0..^𝑁)
21a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ¬ 𝑁 ∈ (0..^𝑁))
3 disjsn 4677 . . . . . 6 (((0..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (0..^𝑁))
42, 3sylibr 233 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) ∩ {𝑁}) = ∅)
54ineq2d 4177 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = (𝐴 ∩ ∅))
6 inindi 4191 . . . 4 (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁}))
7 in0 4356 . . . 4 (𝐴 ∩ ∅) = ∅
85, 6, 73eqtr3g 2794 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁})) = ∅)
9 simpr 485 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 nn0uz 12814 . . . . . . 7 0 = (ℤ‘0)
119, 10eleqtrdi 2842 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
12 fzosplitsn 13690 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1311, 12syl 17 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1413ineq2d 4177 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})))
15 indi 4238 . . . 4 (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁}))
1614, 15eqtrdi 2787 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁})))
17 fzofi 13889 . . . . 5 (0..^(𝑁 + 1)) ∈ Fin
1817a1i 11 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) ∈ Fin)
19 inss2 4194 . . . 4 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))
20 ssfi 9124 . . . 4 (((0..^(𝑁 + 1)) ∈ Fin ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
2118, 19, 20sylancl 586 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
22 2nn 12235 . . . . . 6 2 ∈ ℕ
2322a1i 11 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 2 ∈ ℕ)
24 inss1 4193 . . . . . . 7 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ 𝐴
25 simpl 483 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
2624, 25sstrid 3958 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
2726sselda 3947 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
2823, 27nnexpcld 14158 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℕ)
2928nncnd 12178 . . 3 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℂ)
308, 16, 21, 29fsumsplit 15637 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
31 elfpw 9305 . . . 4 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin))
3226, 21, 31sylanbrc 583 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin))
33 bitsinv.k . . . 4 𝐾 = (bits ↾ ℕ0)
3433bitsinv 16339 . . 3 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
3532, 34syl 17 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
36 inss1 4193 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
3736, 25sstrid 3958 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
38 fzofi 13889 . . . . . . 7 (0..^𝑁) ∈ Fin
3938a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
40 inss2 4194 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
41 ssfi 9124 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4239, 40, 41sylancl 586 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
43 elfpw 9305 . . . . 5 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4437, 42, 43sylanbrc 583 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
4533bitsinv 16339 . . . 4 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
4644, 45syl 17 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
47 snssi 4773 . . . . . . . 8 (𝑁𝐴 → {𝑁} ⊆ 𝐴)
4847adantl 482 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → {𝑁} ⊆ 𝐴)
49 sseqin2 4180 . . . . . . 7 ({𝑁} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑁}) = {𝑁})
5048, 49sylib 217 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = {𝑁})
5150sumeq1d 15597 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ {𝑁} (2↑𝑘))
52 simpr 485 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁𝐴)
5322a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 2 ∈ ℕ)
54 simplr 767 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁 ∈ ℕ0)
5553, 54nnexpcld 14158 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℕ)
5655nncnd 12178 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℂ)
57 oveq2 7370 . . . . . . 7 (𝑘 = 𝑁 → (2↑𝑘) = (2↑𝑁))
5857sumsn 15642 . . . . . 6 ((𝑁𝐴 ∧ (2↑𝑁) ∈ ℂ) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
5952, 56, 58syl2anc 584 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
6051, 59eqtr2d 2772 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
61 simpr 485 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → ¬ 𝑁𝐴)
62 disjsn 4677 . . . . . . 7 ((𝐴 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁𝐴)
6361, 62sylibr 233 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = ∅)
6463sumeq1d 15597 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ ∅ (2↑𝑘))
65 sum0 15617 . . . . 5 Σ𝑘 ∈ ∅ (2↑𝑘) = 0
6664, 65eqtr2di 2788 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → 0 = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6760, 66ifeqda 4527 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6846, 67oveq12d 7380 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
6930, 35, 683eqtr4d 2781 1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  cun 3911  cin 3912  wss 3913  c0 4287  ifcif 4491  𝒫 cpw 4565  {csn 4591  ccnv 5637  cres 5640  cfv 6501  (class class class)co 7362  Fincfn 8890  cc 11058  0cc0 11060  1c1 11061   + caddc 11063  cn 12162  2c2 12217  0cn0 12422  cuz 12772  ..^cfzo 13577  cexp 13977  Σcsu 15582  bitscbits 16310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fzo 13578  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-sum 15583  df-dvds 16148  df-bits 16313
This theorem is referenced by:  sadcaddlem  16348  sadadd2lem  16350
  Copyright terms: Public domain W3C validator