MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinvp1 Structured version   Visualization version   GIF version

Theorem bitsinvp1 16419
Description: Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypothesis
Ref Expression
bitsinv.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
bitsinvp1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))

Proof of Theorem bitsinvp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzonel 13634 . . . . . . 7 ¬ 𝑁 ∈ (0..^𝑁)
21a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ¬ 𝑁 ∈ (0..^𝑁))
3 disjsn 4675 . . . . . 6 (((0..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (0..^𝑁))
42, 3sylibr 234 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) ∩ {𝑁}) = ∅)
54ineq2d 4183 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = (𝐴 ∩ ∅))
6 inindi 4198 . . . 4 (𝐴 ∩ ((0..^𝑁) ∩ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁}))
7 in0 4358 . . . 4 (𝐴 ∩ ∅) = ∅
85, 6, 73eqtr3g 2787 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐴 ∩ (0..^𝑁)) ∩ (𝐴 ∩ {𝑁})) = ∅)
9 simpr 484 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 nn0uz 12835 . . . . . . 7 0 = (ℤ‘0)
119, 10eleqtrdi 2838 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
12 fzosplitsn 13736 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1311, 12syl 17 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
1413ineq2d 4183 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})))
15 indi 4247 . . . 4 (𝐴 ∩ ((0..^𝑁) ∪ {𝑁})) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁}))
1614, 15eqtrdi 2780 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) = ((𝐴 ∩ (0..^𝑁)) ∪ (𝐴 ∩ {𝑁})))
17 fzofi 13939 . . . . 5 (0..^(𝑁 + 1)) ∈ Fin
1817a1i 11 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑁 + 1)) ∈ Fin)
19 inss2 4201 . . . 4 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))
20 ssfi 9137 . . . 4 (((0..^(𝑁 + 1)) ∈ Fin ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
2118, 19, 20sylancl 586 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin)
22 2nn 12259 . . . . . 6 2 ∈ ℕ
2322a1i 11 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 2 ∈ ℕ)
24 inss1 4200 . . . . . . 7 (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ 𝐴
25 simpl 482 . . . . . . 7 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
2624, 25sstrid 3958 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
2726sselda 3946 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
2823, 27nnexpcld 14210 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℕ)
2928nncnd 12202 . . 3 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))) → (2↑𝑘) ∈ ℂ)
308, 16, 21, 29fsumsplit 15707 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
31 elfpw 9305 . . . 4 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^(𝑁 + 1))) ∈ Fin))
3226, 21, 31sylanbrc 583 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin))
33 bitsinv.k . . . 4 𝐾 = (bits ↾ ℕ0)
3433bitsinv 16418 . . 3 ((𝐴 ∩ (0..^(𝑁 + 1))) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
3532, 34syl 17 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = Σ𝑘 ∈ (𝐴 ∩ (0..^(𝑁 + 1)))(2↑𝑘))
36 inss1 4200 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
3736, 25sstrid 3958 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
38 fzofi 13939 . . . . . . 7 (0..^𝑁) ∈ Fin
3938a1i 11 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
40 inss2 4201 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
41 ssfi 9137 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4239, 40, 41sylancl 586 . . . . 5 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
43 elfpw 9305 . . . . 5 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4437, 42, 43sylanbrc 583 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
4533bitsinv 16418 . . . 4 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
4644, 45syl 17 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^𝑁))) = Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘))
47 snssi 4772 . . . . . . . 8 (𝑁𝐴 → {𝑁} ⊆ 𝐴)
4847adantl 481 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → {𝑁} ⊆ 𝐴)
49 sseqin2 4186 . . . . . . 7 ({𝑁} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑁}) = {𝑁})
5048, 49sylib 218 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = {𝑁})
5150sumeq1d 15666 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ {𝑁} (2↑𝑘))
52 simpr 484 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁𝐴)
5322a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 2 ∈ ℕ)
54 simplr 768 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → 𝑁 ∈ ℕ0)
5553, 54nnexpcld 14210 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℕ)
5655nncnd 12202 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) ∈ ℂ)
57 oveq2 7395 . . . . . . 7 (𝑘 = 𝑁 → (2↑𝑘) = (2↑𝑁))
5857sumsn 15712 . . . . . 6 ((𝑁𝐴 ∧ (2↑𝑁) ∈ ℂ) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
5952, 56, 58syl2anc 584 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
6051, 59eqtr2d 2765 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐴) → (2↑𝑁) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
61 simpr 484 . . . . . . 7 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → ¬ 𝑁𝐴)
62 disjsn 4675 . . . . . . 7 ((𝐴 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁𝐴)
6361, 62sylibr 234 . . . . . 6 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → (𝐴 ∩ {𝑁}) = ∅)
6463sumeq1d 15666 . . . . 5 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘) = Σ𝑘 ∈ ∅ (2↑𝑘))
65 sum0 15687 . . . . 5 Σ𝑘 ∈ ∅ (2↑𝑘) = 0
6664, 65eqtr2di 2781 . . . 4 (((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁𝐴) → 0 = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6760, 66ifeqda 4525 . . 3 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) = Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘))
6846, 67oveq12d 7405 . 2 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) = (Σ𝑘 ∈ (𝐴 ∩ (0..^𝑁))(2↑𝑘) + Σ𝑘 ∈ (𝐴 ∩ {𝑁})(2↑𝑘)))
6930, 35, 683eqtr4d 2774 1 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  {csn 4589  ccnv 5637  cres 5640  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  2c2 12241  0cn0 12442  cuz 12793  ..^cfzo 13615  cexp 14026  Σcsu 15652  bitscbits 16389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-bits 16392
This theorem is referenced by:  sadcaddlem  16427  sadadd2lem  16429
  Copyright terms: Public domain W3C validator