MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv1 Structured version   Visualization version   GIF version

Theorem bitsinv1 15447
Description: There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 15443), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
bitsinv1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Distinct variable group:   𝑛,𝑁

Proof of Theorem bitsinv1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6850 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
2 fzo0 12700 . . . . . . . . . . 11 (0..^0) = ∅
31, 2syl6eq 2815 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
43ineq2d 3976 . . . . . . . . 9 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ ∅))
5 in0 4130 . . . . . . . . 9 ((bits‘𝑁) ∩ ∅) = ∅
64, 5syl6eq 2815 . . . . . . . 8 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ∅)
76sumeq1d 14718 . . . . . . 7 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
8 sum0 14739 . . . . . . 7 Σ𝑛 ∈ ∅ (2↑𝑛) = 0
97, 8syl6eq 2815 . . . . . 6 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = 0)
10 oveq2 6850 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
11 2cn 11347 . . . . . . . . 9 2 ∈ ℂ
12 exp0 13071 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
1311, 12ax-mp 5 . . . . . . . 8 (2↑0) = 1
1410, 13syl6eq 2815 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = 1)
1514oveq2d 6858 . . . . . 6 (𝑥 = 0 → (𝑁 mod (2↑𝑥)) = (𝑁 mod 1))
169, 15eqeq12d 2780 . . . . 5 (𝑥 = 0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ 0 = (𝑁 mod 1)))
1716imbi2d 331 . . . 4 (𝑥 = 0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))))
18 oveq2 6850 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
1918ineq2d 3976 . . . . . . 7 (𝑥 = 𝑘 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑘)))
2019sumeq1d 14718 . . . . . 6 (𝑥 = 𝑘 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛))
21 oveq2 6850 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
2221oveq2d 6858 . . . . . 6 (𝑥 = 𝑘 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑘)))
2320, 22eqeq12d 2780 . . . . 5 (𝑥 = 𝑘 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))))
2423imbi2d 331 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)))))
25 oveq2 6850 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
2625ineq2d 3976 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
2726sumeq1d 14718 . . . . . 6 (𝑥 = (𝑘 + 1) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛))
28 oveq2 6850 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
2928oveq2d 6858 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑(𝑘 + 1))))
3027, 29eqeq12d 2780 . . . . 5 (𝑥 = (𝑘 + 1) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
3130imbi2d 331 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
32 oveq2 6850 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
3332ineq2d 3976 . . . . . . 7 (𝑥 = 𝑁 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑁)))
3433sumeq1d 14718 . . . . . 6 (𝑥 = 𝑁 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛))
35 oveq2 6850 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
3635oveq2d 6858 . . . . . 6 (𝑥 = 𝑁 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑁)))
3734, 36eqeq12d 2780 . . . . 5 (𝑥 = 𝑁 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
3837imbi2d 331 . . . 4 (𝑥 = 𝑁 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))))
39 nn0z 11647 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
40 zmod10 12894 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
4139, 40syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 mod 1) = 0)
4241eqcomd 2771 . . . 4 (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))
43 oveq1 6849 . . . . . . 7 𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
44 fzonel 12691 . . . . . . . . . . . . 13 ¬ 𝑘 ∈ (0..^𝑘)
4544a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ¬ 𝑘 ∈ (0..^𝑘))
46 disjsn 4402 . . . . . . . . . . . 12 (((0..^𝑘) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (0..^𝑘))
4745, 46sylibr 225 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((0..^𝑘) ∩ {𝑘}) = ∅)
4847ineq2d 3976 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = ((bits‘𝑁) ∩ ∅))
49 inindi 3990 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘}))
5048, 49, 53eqtr3g 2822 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘})) = ∅)
51 simpr 477 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
52 nn0uz 11922 . . . . . . . . . . . . 13 0 = (ℤ‘0)
5351, 52syl6eleq 2854 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
54 fzosplitsn 12784 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5553, 54syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5655ineq2d 3976 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})))
57 indi 4038 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘}))
5856, 57syl6eq 2815 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘})))
59 fzofi 12981 . . . . . . . . . . 11 (0..^(𝑘 + 1)) ∈ Fin
60 inss2 3993 . . . . . . . . . . 11 ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1))
61 ssfi 8387 . . . . . . . . . . 11 (((0..^(𝑘 + 1)) ∈ Fin ∧ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1))) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
6259, 60, 61mp2an 683 . . . . . . . . . 10 ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin
6362a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
64 2nn 11345 . . . . . . . . . . . 12 2 ∈ ℕ
6564a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 2 ∈ ℕ)
66 simpr 477 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
6766elin2d 3965 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (0..^(𝑘 + 1)))
68 elfzouz 12682 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(𝑘 + 1)) → 𝑛 ∈ (ℤ‘0))
6967, 68syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (ℤ‘0))
7069, 52syl6eleqr 2855 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ℕ0)
7165, 70nnexpcld 13237 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℕ)
7271nncnd 11292 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℂ)
7350, 58, 63, 72fsumsplit 14758 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
74 bitsinv1lem 15446 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
7539, 74sylan 575 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
76 eqeq2 2776 . . . . . . . . . . 11 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
77 eqeq2 2776 . . . . . . . . . . 11 (0 = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0 ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
78 simpr 477 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ (bits‘𝑁))
7978snssd 4494 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → {𝑘} ⊆ (bits‘𝑁))
80 sseqin2 3979 . . . . . . . . . . . . . 14 ({𝑘} ⊆ (bits‘𝑁) ↔ ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
8179, 80sylib 209 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
8281sumeq1d 14718 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ {𝑘} (2↑𝑛))
83 simplr 785 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ ℕ0)
8464a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 2 ∈ ℕ)
8584, 83nnexpcld 13237 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℕ)
8685nncnd 11292 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℂ)
87 oveq2 6850 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
8887sumsn 14762 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (2↑𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
8983, 86, 88syl2anc 579 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
9082, 89eqtrd 2799 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘))
91 simpr 477 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ¬ 𝑘 ∈ (bits‘𝑁))
92 disjsn 4402 . . . . . . . . . . . . . 14 (((bits‘𝑁) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (bits‘𝑁))
9391, 92sylibr 225 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = ∅)
9493sumeq1d 14718 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
9594, 8syl6eq 2815 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0)
9676, 77, 90, 95ifbothda 4280 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0))
9796oveq2d 6858 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
9875, 97eqtr4d 2802 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
9973, 98eqeq12d 2780 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))) ↔ (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛))))
10043, 99syl5ibr 237 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
101100expcom 402 . . . . 5 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
102101a2d 29 . . . 4 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))) → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
10317, 24, 31, 38, 42, 102nn0ind 11719 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
104103pm2.43i 52 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))
105 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
106105, 52syl6eleq 2854 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
10764a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
108107, 105nnexpcld 13237 . . . . . . 7 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
109108nnzd 11728 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
110 2z 11656 . . . . . . . 8 2 ∈ ℤ
111 uzid 11901 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
112110, 111ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
113 bernneq3 13199 . . . . . . 7 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁))
114112, 113mpan 681 . . . . . 6 (𝑁 ∈ ℕ0𝑁 < (2↑𝑁))
115 elfzo2 12681 . . . . . 6 (𝑁 ∈ (0..^(2↑𝑁)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑁) ∈ ℤ ∧ 𝑁 < (2↑𝑁)))
116106, 109, 114, 115syl3anbrc 1443 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(2↑𝑁)))
117 bitsfzo 15440 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
11839, 105, 117syl2anc 579 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
119116, 118mpbid 223 . . . 4 (𝑁 ∈ ℕ0 → (bits‘𝑁) ⊆ (0..^𝑁))
120 df-ss 3746 . . . 4 ((bits‘𝑁) ⊆ (0..^𝑁) ↔ ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
121119, 120sylib 209 . . 3 (𝑁 ∈ ℕ0 → ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
122121sumeq1d 14718 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛))
123 nn0re 11548 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
124 2rp 12033 . . . . 5 2 ∈ ℝ+
125124a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
126125, 39rpexpcld 13239 . . 3 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
127 nn0ge0 11565 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
128 modid 12903 . . 3 (((𝑁 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑁𝑁 < (2↑𝑁))) → (𝑁 mod (2↑𝑁)) = 𝑁)
129123, 126, 127, 114, 128syl22anc 867 . 2 (𝑁 ∈ ℕ0 → (𝑁 mod (2↑𝑁)) = 𝑁)
130104, 122, 1293eqtr3d 2807 1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  cun 3730  cin 3731  wss 3732  c0 4079  ifcif 4243  {csn 4334   class class class wbr 4809  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   < clt 10328  cle 10329  cn 11274  2c2 11327  0cn0 11538  cz 11624  cuz 11886  +crp 12028  ..^cfzo 12673   mod cmo 12876  cexp 13067  Σcsu 14703  bitscbits 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704  df-dvds 15268  df-bits 15427
This theorem is referenced by:  bitsinv2  15448  bitsf1ocnv  15449  eulerpartlemgc  30806  eulerpartlemgs2  30824
  Copyright terms: Public domain W3C validator