MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv1 Structured version   Visualization version   GIF version

Theorem bitsinv1 16479
Description: There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 16475), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
bitsinv1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Distinct variable group:   𝑛,𝑁

Proof of Theorem bitsinv1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
2 fzo0 13723 . . . . . . . . . . 11 (0..^0) = ∅
31, 2eqtrdi 2793 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
43ineq2d 4220 . . . . . . . . 9 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ ∅))
5 in0 4395 . . . . . . . . 9 ((bits‘𝑁) ∩ ∅) = ∅
64, 5eqtrdi 2793 . . . . . . . 8 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ∅)
76sumeq1d 15736 . . . . . . 7 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
8 sum0 15757 . . . . . . 7 Σ𝑛 ∈ ∅ (2↑𝑛) = 0
97, 8eqtrdi 2793 . . . . . 6 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = 0)
10 oveq2 7439 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
11 2cn 12341 . . . . . . . . 9 2 ∈ ℂ
12 exp0 14106 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
1311, 12ax-mp 5 . . . . . . . 8 (2↑0) = 1
1410, 13eqtrdi 2793 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = 1)
1514oveq2d 7447 . . . . . 6 (𝑥 = 0 → (𝑁 mod (2↑𝑥)) = (𝑁 mod 1))
169, 15eqeq12d 2753 . . . . 5 (𝑥 = 0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ 0 = (𝑁 mod 1)))
1716imbi2d 340 . . . 4 (𝑥 = 0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))))
18 oveq2 7439 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
1918ineq2d 4220 . . . . . . 7 (𝑥 = 𝑘 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑘)))
2019sumeq1d 15736 . . . . . 6 (𝑥 = 𝑘 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛))
21 oveq2 7439 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
2221oveq2d 7447 . . . . . 6 (𝑥 = 𝑘 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑘)))
2320, 22eqeq12d 2753 . . . . 5 (𝑥 = 𝑘 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))))
2423imbi2d 340 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)))))
25 oveq2 7439 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
2625ineq2d 4220 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
2726sumeq1d 15736 . . . . . 6 (𝑥 = (𝑘 + 1) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛))
28 oveq2 7439 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
2928oveq2d 7447 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑(𝑘 + 1))))
3027, 29eqeq12d 2753 . . . . 5 (𝑥 = (𝑘 + 1) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
3130imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
32 oveq2 7439 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
3332ineq2d 4220 . . . . . . 7 (𝑥 = 𝑁 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑁)))
3433sumeq1d 15736 . . . . . 6 (𝑥 = 𝑁 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛))
35 oveq2 7439 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
3635oveq2d 7447 . . . . . 6 (𝑥 = 𝑁 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑁)))
3734, 36eqeq12d 2753 . . . . 5 (𝑥 = 𝑁 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
3837imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))))
39 nn0z 12638 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
40 zmod10 13927 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
4139, 40syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 mod 1) = 0)
4241eqcomd 2743 . . . 4 (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))
43 oveq1 7438 . . . . . . 7 𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
44 fzonel 13713 . . . . . . . . . . . . 13 ¬ 𝑘 ∈ (0..^𝑘)
4544a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ¬ 𝑘 ∈ (0..^𝑘))
46 disjsn 4711 . . . . . . . . . . . 12 (((0..^𝑘) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (0..^𝑘))
4745, 46sylibr 234 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((0..^𝑘) ∩ {𝑘}) = ∅)
4847ineq2d 4220 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = ((bits‘𝑁) ∩ ∅))
49 inindi 4235 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘}))
5048, 49, 53eqtr3g 2800 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘})) = ∅)
51 simpr 484 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
52 nn0uz 12920 . . . . . . . . . . . . 13 0 = (ℤ‘0)
5351, 52eleqtrdi 2851 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
54 fzosplitsn 13814 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5553, 54syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5655ineq2d 4220 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})))
57 indi 4284 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘}))
5856, 57eqtrdi 2793 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘})))
59 fzofi 14015 . . . . . . . . . . 11 (0..^(𝑘 + 1)) ∈ Fin
60 inss2 4238 . . . . . . . . . . 11 ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1))
61 ssfi 9213 . . . . . . . . . . 11 (((0..^(𝑘 + 1)) ∈ Fin ∧ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1))) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
6259, 60, 61mp2an 692 . . . . . . . . . 10 ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin
6362a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
64 2nn 12339 . . . . . . . . . . . 12 2 ∈ ℕ
6564a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 2 ∈ ℕ)
66 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
6766elin2d 4205 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (0..^(𝑘 + 1)))
68 elfzouz 13703 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(𝑘 + 1)) → 𝑛 ∈ (ℤ‘0))
6967, 68syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (ℤ‘0))
7069, 52eleqtrrdi 2852 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ℕ0)
7165, 70nnexpcld 14284 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℕ)
7271nncnd 12282 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℂ)
7350, 58, 63, 72fsumsplit 15777 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
74 bitsinv1lem 16478 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
7539, 74sylan 580 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
76 eqeq2 2749 . . . . . . . . . . 11 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
77 eqeq2 2749 . . . . . . . . . . 11 (0 = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0 ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
78 simpr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ (bits‘𝑁))
7978snssd 4809 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → {𝑘} ⊆ (bits‘𝑁))
80 sseqin2 4223 . . . . . . . . . . . . . 14 ({𝑘} ⊆ (bits‘𝑁) ↔ ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
8179, 80sylib 218 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
8281sumeq1d 15736 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ {𝑘} (2↑𝑛))
83 simplr 769 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ ℕ0)
8464a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 2 ∈ ℕ)
8584, 83nnexpcld 14284 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℕ)
8685nncnd 12282 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℂ)
87 oveq2 7439 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
8887sumsn 15782 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (2↑𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
8983, 86, 88syl2anc 584 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
9082, 89eqtrd 2777 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘))
91 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ¬ 𝑘 ∈ (bits‘𝑁))
92 disjsn 4711 . . . . . . . . . . . . . 14 (((bits‘𝑁) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (bits‘𝑁))
9391, 92sylibr 234 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = ∅)
9493sumeq1d 15736 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
9594, 8eqtrdi 2793 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0)
9676, 77, 90, 95ifbothda 4564 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0))
9796oveq2d 7447 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
9875, 97eqtr4d 2780 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
9973, 98eqeq12d 2753 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))) ↔ (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛))))
10043, 99imbitrrid 246 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
101100expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
102101a2d 29 . . . 4 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))) → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
10317, 24, 31, 38, 42, 102nn0ind 12713 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
104103pm2.43i 52 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))
105 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
106105, 52eleqtrdi 2851 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
10764a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
108107, 105nnexpcld 14284 . . . . . . 7 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
109108nnzd 12640 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
110 2z 12649 . . . . . . . 8 2 ∈ ℤ
111 uzid 12893 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
112110, 111ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
113 bernneq3 14270 . . . . . . 7 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁))
114112, 113mpan 690 . . . . . 6 (𝑁 ∈ ℕ0𝑁 < (2↑𝑁))
115 elfzo2 13702 . . . . . 6 (𝑁 ∈ (0..^(2↑𝑁)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑁) ∈ ℤ ∧ 𝑁 < (2↑𝑁)))
116106, 109, 114, 115syl3anbrc 1344 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(2↑𝑁)))
117 bitsfzo 16472 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
11839, 105, 117syl2anc 584 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
119116, 118mpbid 232 . . . 4 (𝑁 ∈ ℕ0 → (bits‘𝑁) ⊆ (0..^𝑁))
120 dfss2 3969 . . . 4 ((bits‘𝑁) ⊆ (0..^𝑁) ↔ ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
121119, 120sylib 218 . . 3 (𝑁 ∈ ℕ0 → ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
122121sumeq1d 15736 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛))
123 nn0re 12535 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
124 2rp 13039 . . . . 5 2 ∈ ℝ+
125124a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
126125, 39rpexpcld 14286 . . 3 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
127 nn0ge0 12551 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
128 modid 13936 . . 3 (((𝑁 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑁𝑁 < (2↑𝑁))) → (𝑁 mod (2↑𝑁)) = 𝑁)
129123, 126, 127, 114, 128syl22anc 839 . 2 (𝑁 ∈ ℕ0 → (𝑁 mod (2↑𝑁)) = 𝑁)
130104, 122, 1293eqtr3d 2785 1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cun 3949  cin 3950  wss 3951  c0 4333  ifcif 4525  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ..^cfzo 13694   mod cmo 13909  cexp 14102  Σcsu 15722  bitscbits 16456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-bits 16459
This theorem is referenced by:  bitsinv2  16480  bitsf1ocnv  16481  eulerpartlemgc  34364  eulerpartlemgs2  34382
  Copyright terms: Public domain W3C validator