MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offres Structured version   Visualization version   GIF version

Theorem offres 7666
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)))

Proof of Theorem offres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4123 . . . . 5 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → 𝑥𝐷)
2 fvres 6664 . . . . . 6 (𝑥𝐷 → ((𝐹𝐷)‘𝑥) = (𝐹𝑥))
3 fvres 6664 . . . . . 6 (𝑥𝐷 → ((𝐺𝐷)‘𝑥) = (𝐺𝑥))
42, 3oveq12d 7153 . . . . 5 (𝑥𝐷 → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
51, 4syl 17 . . . 4 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
65mpteq2ia 5121 . . 3 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
7 inindi 4153 . . . . 5 (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
8 incom 4128 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) = (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺))
9 dmres 5840 . . . . . 6 dom (𝐹𝐷) = (𝐷 ∩ dom 𝐹)
10 dmres 5840 . . . . . 6 dom (𝐺𝐷) = (𝐷 ∩ dom 𝐺)
119, 10ineq12i 4137 . . . . 5 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
127, 8, 113eqtr4ri 2832 . . . 4 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷)
1312mpteq1i 5120 . . 3 (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
14 resmpt3 5873 . . 3 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
156, 13, 143eqtr4ri 2832 . 2 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
16 offval3 7665 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1716reseq1d 5817 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ↾ 𝐷) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷))
18 resexg 5864 . . 3 (𝐹𝑉 → (𝐹𝐷) ∈ V)
19 resexg 5864 . . 3 (𝐺𝑊 → (𝐺𝐷) ∈ V)
20 offval3 7665 . . 3 (((𝐹𝐷) ∈ V ∧ (𝐺𝐷) ∈ V) → ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2118, 19, 20syl2an 598 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2215, 17, 213eqtr4a 2859 1 ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  cmpt 5110  dom cdm 5519  cres 5521  cfv 6324  (class class class)co 7135  f cof 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389
This theorem is referenced by:  pwssplit2  19825  pwssplit3  19826  islindf4  20527  tsmsadd  22752  jensen  25574  fdivmpt  44954
  Copyright terms: Public domain W3C validator