MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offres Structured version   Visualization version   GIF version

Theorem offres 7915
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)))

Proof of Theorem offres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4149 . . . . 5 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → 𝑥𝐷)
2 fvres 6841 . . . . . 6 (𝑥𝐷 → ((𝐹𝐷)‘𝑥) = (𝐹𝑥))
3 fvres 6841 . . . . . 6 (𝑥𝐷 → ((𝐺𝐷)‘𝑥) = (𝐺𝑥))
42, 3oveq12d 7364 . . . . 5 (𝑥𝐷 → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
51, 4syl 17 . . . 4 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
65mpteq2ia 5184 . . 3 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
7 inindi 4182 . . . . 5 (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
8 incom 4156 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) = (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺))
9 dmres 5960 . . . . . 6 dom (𝐹𝐷) = (𝐷 ∩ dom 𝐹)
10 dmres 5960 . . . . . 6 dom (𝐺𝐷) = (𝐷 ∩ dom 𝐺)
119, 10ineq12i 4165 . . . . 5 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
127, 8, 113eqtr4ri 2765 . . . 4 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷)
1312mpteq1i 5180 . . 3 (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
14 resmpt3 5986 . . 3 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
156, 13, 143eqtr4ri 2765 . 2 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
16 offval3 7914 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1716reseq1d 5926 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ↾ 𝐷) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷))
18 resexg 5975 . . 3 (𝐹𝑉 → (𝐹𝐷) ∈ V)
19 resexg 5975 . . 3 (𝐺𝑊 → (𝐺𝐷) ∈ V)
20 offval3 7914 . . 3 (((𝐹𝐷) ∈ V ∧ (𝐺𝐷) ∈ V) → ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2118, 19, 20syl2an 596 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2215, 17, 213eqtr4a 2792 1 ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘f 𝑅(𝐺𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  cmpt 5170  dom cdm 5614  cres 5616  cfv 6481  (class class class)co 7346  f cof 7608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610
This theorem is referenced by:  pwssplit2  20994  pwssplit3  20995  islindf4  21775  tsmsadd  24062  jensen  26926  ply1degltdimlem  33635  fdivmpt  48651
  Copyright terms: Public domain W3C validator