MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexclem Structured version   Visualization version   GIF version

Theorem incexclem 15721
Description: Lemma for incexc 15722. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexclem ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠

Proof of Theorem incexclem
Dummy variables 𝑏 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4876 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
2 uni0 4896 . . . . . . . . . . 11 ∅ = ∅
31, 2eqtrdi 2792 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
43ineq2d 4172 . . . . . . . . 9 (𝑥 = ∅ → (𝑏 𝑥) = (𝑏 ∩ ∅))
5 in0 4351 . . . . . . . . 9 (𝑏 ∩ ∅) = ∅
64, 5eqtrdi 2792 . . . . . . . 8 (𝑥 = ∅ → (𝑏 𝑥) = ∅)
76fveq2d 6846 . . . . . . 7 (𝑥 = ∅ → (♯‘(𝑏 𝑥)) = (♯‘∅))
8 hash0 14267 . . . . . . 7 (♯‘∅) = 0
97, 8eqtrdi 2792 . . . . . 6 (𝑥 = ∅ → (♯‘(𝑏 𝑥)) = 0)
109oveq2d 7373 . . . . 5 (𝑥 = ∅ → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − 0))
11 pweq 4574 . . . . . . 7 (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅)
12 pw0 4772 . . . . . . 7 𝒫 ∅ = {∅}
1311, 12eqtrdi 2792 . . . . . 6 (𝑥 = ∅ → 𝒫 𝑥 = {∅})
1413sumeq1d 15586 . . . . 5 (𝑥 = ∅ → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
1510, 14eqeq12d 2752 . . . 4 (𝑥 = ∅ → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
1615ralbidv 3174 . . 3 (𝑥 = ∅ → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
17 unieq 4876 . . . . . . . 8 (𝑥 = 𝑦 𝑥 = 𝑦)
1817ineq2d 4172 . . . . . . 7 (𝑥 = 𝑦 → (𝑏 𝑥) = (𝑏 𝑦))
1918fveq2d 6846 . . . . . 6 (𝑥 = 𝑦 → (♯‘(𝑏 𝑥)) = (♯‘(𝑏 𝑦)))
2019oveq2d 7373 . . . . 5 (𝑥 = 𝑦 → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − (♯‘(𝑏 𝑦))))
21 pweq 4574 . . . . . 6 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
2221sumeq1d 15586 . . . . 5 (𝑥 = 𝑦 → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
2320, 22eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
2423ralbidv 3174 . . 3 (𝑥 = 𝑦 → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
25 unieq 4876 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
26 uniun 4891 . . . . . . . . . 10 (𝑦 ∪ {𝑧}) = ( 𝑦 {𝑧})
27 unisnv 4888 . . . . . . . . . . 11 {𝑧} = 𝑧
2827uneq2i 4120 . . . . . . . . . 10 ( 𝑦 {𝑧}) = ( 𝑦𝑧)
2926, 28eqtri 2764 . . . . . . . . 9 (𝑦 ∪ {𝑧}) = ( 𝑦𝑧)
3025, 29eqtrdi 2792 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = ( 𝑦𝑧))
3130ineq2d 4172 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑏 𝑥) = (𝑏 ∩ ( 𝑦𝑧)))
3231fveq2d 6846 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑏 𝑥)) = (♯‘(𝑏 ∩ ( 𝑦𝑧))))
3332oveq2d 7373 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))))
34 pweq 4574 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧}))
3534sumeq1d 15586 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
3633, 35eqeq12d 2752 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
3736ralbidv 3174 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
38 unieq 4876 . . . . . . . 8 (𝑥 = 𝐴 𝑥 = 𝐴)
3938ineq2d 4172 . . . . . . 7 (𝑥 = 𝐴 → (𝑏 𝑥) = (𝑏 𝐴))
4039fveq2d 6846 . . . . . 6 (𝑥 = 𝐴 → (♯‘(𝑏 𝑥)) = (♯‘(𝑏 𝐴)))
4140oveq2d 7373 . . . . 5 (𝑥 = 𝐴 → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − (♯‘(𝑏 𝐴))))
42 pweq 4574 . . . . . 6 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
4342sumeq1d 15586 . . . . 5 (𝑥 = 𝐴 → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
4441, 43eqeq12d 2752 . . . 4 (𝑥 = 𝐴 → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
4544ralbidv 3174 . . 3 (𝑥 = 𝐴 → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
46 hashcl 14256 . . . . . . 7 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℕ0)
4746nn0cnd 12475 . . . . . 6 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℂ)
4847mulid2d 11173 . . . . 5 (𝑏 ∈ Fin → (1 · (♯‘𝑏)) = (♯‘𝑏))
49 0ex 5264 . . . . . 6 ∅ ∈ V
5048, 47eqeltrd 2838 . . . . . 6 (𝑏 ∈ Fin → (1 · (♯‘𝑏)) ∈ ℂ)
51 fveq2 6842 . . . . . . . . . . 11 (𝑠 = ∅ → (♯‘𝑠) = (♯‘∅))
5251, 8eqtrdi 2792 . . . . . . . . . 10 (𝑠 = ∅ → (♯‘𝑠) = 0)
5352oveq2d 7373 . . . . . . . . 9 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = (-1↑0))
54 neg1cn 12267 . . . . . . . . . 10 -1 ∈ ℂ
55 exp0 13971 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
5654, 55ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
5753, 56eqtrdi 2792 . . . . . . . 8 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = 1)
58 rint0 4951 . . . . . . . . 9 (𝑠 = ∅ → (𝑏 𝑠) = 𝑏)
5958fveq2d 6846 . . . . . . . 8 (𝑠 = ∅ → (♯‘(𝑏 𝑠)) = (♯‘𝑏))
6057, 59oveq12d 7375 . . . . . . 7 (𝑠 = ∅ → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = (1 · (♯‘𝑏)))
6160sumsn 15631 . . . . . 6 ((∅ ∈ V ∧ (1 · (♯‘𝑏)) ∈ ℂ) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = (1 · (♯‘𝑏)))
6249, 50, 61sylancr 587 . . . . 5 (𝑏 ∈ Fin → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = (1 · (♯‘𝑏)))
6347subid1d 11501 . . . . 5 (𝑏 ∈ Fin → ((♯‘𝑏) − 0) = (♯‘𝑏))
6448, 62, 633eqtr4rd 2787 . . . 4 (𝑏 ∈ Fin → ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
6564rgen 3066 . . 3 𝑏 ∈ Fin ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))
66 fveq2 6842 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (♯‘𝑏) = (♯‘𝑥))
67 ineq1 4165 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (𝑏 𝑦) = (𝑥 𝑦))
6867fveq2d 6846 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (♯‘(𝑏 𝑦)) = (♯‘(𝑥 𝑦)))
6966, 68oveq12d 7375 . . . . . . . . . . 11 (𝑏 = 𝑥 → ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = ((♯‘𝑥) − (♯‘(𝑥 𝑦))))
70 simpl 483 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → 𝑏 = 𝑥)
7170ineq1d 4171 . . . . . . . . . . . . . 14 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → (𝑏 𝑠) = (𝑥 𝑠))
7271fveq2d 6846 . . . . . . . . . . . . 13 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → (♯‘(𝑏 𝑠)) = (♯‘(𝑥 𝑠)))
7372oveq2d 7373 . . . . . . . . . . . 12 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
7473sumeq2dv 15588 . . . . . . . . . . 11 (𝑏 = 𝑥 → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
7569, 74eqeq12d 2752 . . . . . . . . . 10 (𝑏 = 𝑥 → (((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑥) − (♯‘(𝑥 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
7675rspcva 3579 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
7776adantll 712 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
78 simpr 485 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝑥 ∈ Fin)
79 inss1 4188 . . . . . . . . . 10 (𝑥𝑧) ⊆ 𝑥
80 ssfi 9117 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ (𝑥𝑧) ⊆ 𝑥) → (𝑥𝑧) ∈ Fin)
8178, 79, 80sylancl 586 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑥𝑧) ∈ Fin)
82 fveq2 6842 . . . . . . . . . . . 12 (𝑏 = (𝑥𝑧) → (♯‘𝑏) = (♯‘(𝑥𝑧)))
83 ineq1 4165 . . . . . . . . . . . . . 14 (𝑏 = (𝑥𝑧) → (𝑏 𝑦) = ((𝑥𝑧) ∩ 𝑦))
84 in32 4181 . . . . . . . . . . . . . . 15 ((𝑥𝑧) ∩ 𝑦) = ((𝑥 𝑦) ∩ 𝑧)
85 inass 4179 . . . . . . . . . . . . . . 15 ((𝑥 𝑦) ∩ 𝑧) = (𝑥 ∩ ( 𝑦𝑧))
8684, 85eqtri 2764 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∩ 𝑦) = (𝑥 ∩ ( 𝑦𝑧))
8783, 86eqtrdi 2792 . . . . . . . . . . . . 13 (𝑏 = (𝑥𝑧) → (𝑏 𝑦) = (𝑥 ∩ ( 𝑦𝑧)))
8887fveq2d 6846 . . . . . . . . . . . 12 (𝑏 = (𝑥𝑧) → (♯‘(𝑏 𝑦)) = (♯‘(𝑥 ∩ ( 𝑦𝑧))))
8982, 88oveq12d 7375 . . . . . . . . . . 11 (𝑏 = (𝑥𝑧) → ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))
90 ineq1 4165 . . . . . . . . . . . . . . 15 (𝑏 = (𝑥𝑧) → (𝑏 𝑠) = ((𝑥𝑧) ∩ 𝑠))
91 in32 4181 . . . . . . . . . . . . . . . 16 ((𝑥𝑧) ∩ 𝑠) = ((𝑥 𝑠) ∩ 𝑧)
92 inass 4179 . . . . . . . . . . . . . . . 16 ((𝑥 𝑠) ∩ 𝑧) = (𝑥 ∩ ( 𝑠𝑧))
9391, 92eqtri 2764 . . . . . . . . . . . . . . 15 ((𝑥𝑧) ∩ 𝑠) = (𝑥 ∩ ( 𝑠𝑧))
9490, 93eqtrdi 2792 . . . . . . . . . . . . . 14 (𝑏 = (𝑥𝑧) → (𝑏 𝑠) = (𝑥 ∩ ( 𝑠𝑧)))
9594fveq2d 6846 . . . . . . . . . . . . 13 (𝑏 = (𝑥𝑧) → (♯‘(𝑏 𝑠)) = (♯‘(𝑥 ∩ ( 𝑠𝑧))))
9695oveq2d 7373 . . . . . . . . . . . 12 (𝑏 = (𝑥𝑧) → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
9796sumeq2sdv 15589 . . . . . . . . . . 11 (𝑏 = (𝑥𝑧) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
9889, 97eqeq12d 2752 . . . . . . . . . 10 (𝑏 = (𝑥𝑧) → (((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
9998rspcva 3579 . . . . . . . . 9 (((𝑥𝑧) ∈ Fin ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
10081, 99sylan 580 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
10177, 100oveq12d 7375 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
102 inss1 4188 . . . . . . . . . . . . . 14 (𝑥 𝑦) ⊆ 𝑥
103 ssfi 9117 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑥 𝑦) ⊆ 𝑥) → (𝑥 𝑦) ∈ Fin)
10478, 102, 103sylancl 586 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑥 𝑦) ∈ Fin)
105 hashcl 14256 . . . . . . . . . . . . 13 ((𝑥 𝑦) ∈ Fin → (♯‘(𝑥 𝑦)) ∈ ℕ0)
106104, 105syl 17 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 𝑦)) ∈ ℕ0)
107106nn0cnd 12475 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 𝑦)) ∈ ℂ)
108 hashcl 14256 . . . . . . . . . . . . 13 ((𝑥𝑧) ∈ Fin → (♯‘(𝑥𝑧)) ∈ ℕ0)
10981, 108syl 17 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥𝑧)) ∈ ℕ0)
110109nn0cnd 12475 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥𝑧)) ∈ ℂ)
111 inss1 4188 . . . . . . . . . . . . . 14 (𝑥 ∩ ( 𝑦𝑧)) ⊆ 𝑥
112 ssfi 9117 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑥 ∩ ( 𝑦𝑧)) ⊆ 𝑥) → (𝑥 ∩ ( 𝑦𝑧)) ∈ Fin)
11378, 111, 112sylancl 586 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑥 ∩ ( 𝑦𝑧)) ∈ Fin)
114 hashcl 14256 . . . . . . . . . . . . 13 ((𝑥 ∩ ( 𝑦𝑧)) ∈ Fin → (♯‘(𝑥 ∩ ( 𝑦𝑧))) ∈ ℕ0)
115113, 114syl 17 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) ∈ ℕ0)
116115nn0cnd 12475 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) ∈ ℂ)
117 hashun3 14284 . . . . . . . . . . . . 13 (((𝑥 𝑦) ∈ Fin ∧ (𝑥𝑧) ∈ Fin) → (♯‘((𝑥 𝑦) ∪ (𝑥𝑧))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘((𝑥 𝑦) ∩ (𝑥𝑧)))))
118104, 81, 117syl2anc 584 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘((𝑥 𝑦) ∪ (𝑥𝑧))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘((𝑥 𝑦) ∩ (𝑥𝑧)))))
119 indi 4233 . . . . . . . . . . . . 13 (𝑥 ∩ ( 𝑦𝑧)) = ((𝑥 𝑦) ∪ (𝑥𝑧))
120119fveq2i 6845 . . . . . . . . . . . 12 (♯‘(𝑥 ∩ ( 𝑦𝑧))) = (♯‘((𝑥 𝑦) ∪ (𝑥𝑧)))
121 inindi 4186 . . . . . . . . . . . . . 14 (𝑥 ∩ ( 𝑦𝑧)) = ((𝑥 𝑦) ∩ (𝑥𝑧))
122121fveq2i 6845 . . . . . . . . . . . . 13 (♯‘(𝑥 ∩ ( 𝑦𝑧))) = (♯‘((𝑥 𝑦) ∩ (𝑥𝑧)))
123122oveq2i 7368 . . . . . . . . . . . 12 (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘((𝑥 𝑦) ∩ (𝑥𝑧))))
124118, 120, 1233eqtr4g 2801 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))
125107, 110, 116, 124assraddsubd 11569 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) = ((♯‘(𝑥 𝑦)) + ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))))
126125oveq2d 7373 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = ((♯‘𝑥) − ((♯‘(𝑥 𝑦)) + ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))))
127 hashcl 14256 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
128127adantl 482 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘𝑥) ∈ ℕ0)
129128nn0cnd 12475 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘𝑥) ∈ ℂ)
130110, 116subcld 11512 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) ∈ ℂ)
131129, 107, 130subsub4d 11543 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))) = ((♯‘𝑥) − ((♯‘(𝑥 𝑦)) + ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))))
132126, 131eqtr4d 2779 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))))
133132adantr 481 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))))
134 disjdif 4431 . . . . . . . . . . 11 (𝒫 𝑦 ∩ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = ∅
135134a1i 11 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝒫 𝑦 ∩ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = ∅)
136 ssun1 4132 . . . . . . . . . . . . . 14 𝑦 ⊆ (𝑦 ∪ {𝑧})
137136sspwi 4572 . . . . . . . . . . . . 13 𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧})
138 undif 4441 . . . . . . . . . . . . 13 (𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧}) ↔ (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = 𝒫 (𝑦 ∪ {𝑧}))
139137, 138mpbi 229 . . . . . . . . . . . 12 (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = 𝒫 (𝑦 ∪ {𝑧})
140139eqcomi 2745 . . . . . . . . . . 11 𝒫 (𝑦 ∪ {𝑧}) = (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))
141140a1i 11 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 (𝑦 ∪ {𝑧}) = (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)))
142 simpll 765 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝑦 ∈ Fin)
143 snfi 8988 . . . . . . . . . . . 12 {𝑧} ∈ Fin
144 unfi 9116 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
145142, 143, 144sylancl 586 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
146 pwfi 9122 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)
147145, 146sylib 217 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)
14854a1i 11 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → -1 ∈ ℂ)
149 elpwi 4567 . . . . . . . . . . . . . 14 (𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}) → 𝑠 ⊆ (𝑦 ∪ {𝑧}))
150 ssfi 9117 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝑠 ⊆ (𝑦 ∪ {𝑧})) → 𝑠 ∈ Fin)
151145, 149, 150syl2an 596 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → 𝑠 ∈ Fin)
152 hashcl 14256 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
153151, 152syl 17 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘𝑠) ∈ ℕ0)
154148, 153expcld 14051 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (-1↑(♯‘𝑠)) ∈ ℂ)
155 simplr 767 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → 𝑥 ∈ Fin)
156 inss1 4188 . . . . . . . . . . . . . 14 (𝑥 𝑠) ⊆ 𝑥
157 ssfi 9117 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑥 𝑠) ⊆ 𝑥) → (𝑥 𝑠) ∈ Fin)
158155, 156, 157sylancl 586 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (𝑥 𝑠) ∈ Fin)
159 hashcl 14256 . . . . . . . . . . . . 13 ((𝑥 𝑠) ∈ Fin → (♯‘(𝑥 𝑠)) ∈ ℕ0)
160158, 159syl 17 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 𝑠)) ∈ ℕ0)
161160nn0cnd 12475 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 𝑠)) ∈ ℂ)
162154, 161mulcld 11175 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
163135, 141, 147, 162fsumsplit 15626 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
164 fveq2 6842 . . . . . . . . . . . . . 14 (𝑠 = (𝑡 ∪ {𝑧}) → (♯‘𝑠) = (♯‘(𝑡 ∪ {𝑧})))
165164oveq2d 7373 . . . . . . . . . . . . 13 (𝑠 = (𝑡 ∪ {𝑧}) → (-1↑(♯‘𝑠)) = (-1↑(♯‘(𝑡 ∪ {𝑧}))))
166 inteq 4910 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑡 ∪ {𝑧}) → 𝑠 = (𝑡 ∪ {𝑧}))
167 vex 3449 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
168167intunsn 4950 . . . . . . . . . . . . . . . 16 (𝑡 ∪ {𝑧}) = ( 𝑡𝑧)
169166, 168eqtrdi 2792 . . . . . . . . . . . . . . 15 (𝑠 = (𝑡 ∪ {𝑧}) → 𝑠 = ( 𝑡𝑧))
170169ineq2d 4172 . . . . . . . . . . . . . 14 (𝑠 = (𝑡 ∪ {𝑧}) → (𝑥 𝑠) = (𝑥 ∩ ( 𝑡𝑧)))
171170fveq2d 6846 . . . . . . . . . . . . 13 (𝑠 = (𝑡 ∪ {𝑧}) → (♯‘(𝑥 𝑠)) = (♯‘(𝑥 ∩ ( 𝑡𝑧))))
172165, 171oveq12d 7375 . . . . . . . . . . . 12 (𝑠 = (𝑡 ∪ {𝑧}) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = ((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))))
173 pwfi 9122 . . . . . . . . . . . . 13 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
174142, 173sylib 217 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 𝑦 ∈ Fin)
175 eqid 2736 . . . . . . . . . . . . 13 (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧})) = (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))
176 elpwi 4567 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ 𝒫 𝑦𝑢𝑦)
177176adantl 482 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → 𝑢𝑦)
178 unss1 4139 . . . . . . . . . . . . . . . 16 (𝑢𝑦 → (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧}))
179177, 178syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧}))
180 vex 3449 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
181 vsnex 5386 . . . . . . . . . . . . . . . . 17 {𝑧} ∈ V
182180, 181unex 7680 . . . . . . . . . . . . . . . 16 (𝑢 ∪ {𝑧}) ∈ V
183182elpw 4564 . . . . . . . . . . . . . . 15 ((𝑢 ∪ {𝑧}) ∈ 𝒫 (𝑦 ∪ {𝑧}) ↔ (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧}))
184179, 183sylibr 233 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ∈ 𝒫 (𝑦 ∪ {𝑧}))
185 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ¬ 𝑧𝑦)
186 elpwi 4567 . . . . . . . . . . . . . . . 16 ((𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦 → (𝑢 ∪ {𝑧}) ⊆ 𝑦)
187 ssun2 4133 . . . . . . . . . . . . . . . . . 18 {𝑧} ⊆ (𝑢 ∪ {𝑧})
188167snss 4746 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑢 ∪ {𝑧}) ↔ {𝑧} ⊆ (𝑢 ∪ {𝑧}))
189187, 188mpbir 230 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (𝑢 ∪ {𝑧})
190189a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → 𝑧 ∈ (𝑢 ∪ {𝑧}))
191 ssel 3937 . . . . . . . . . . . . . . . 16 ((𝑢 ∪ {𝑧}) ⊆ 𝑦 → (𝑧 ∈ (𝑢 ∪ {𝑧}) → 𝑧𝑦))
192186, 190, 191syl2imc 41 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ((𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦𝑧𝑦))
193185, 192mtod 197 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ¬ (𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦)
194184, 193eldifd 3921 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))
195 eldifi 4086 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
196195adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
197196elpwid 4569 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ⊆ (𝑦 ∪ {𝑧}))
198 uncom 4113 . . . . . . . . . . . . . . . 16 (𝑦 ∪ {𝑧}) = ({𝑧} ∪ 𝑦)
199197, 198sseqtrdi 3994 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ⊆ ({𝑧} ∪ 𝑦))
200 ssundif 4445 . . . . . . . . . . . . . . 15 (𝑠 ⊆ ({𝑧} ∪ 𝑦) ↔ (𝑠 ∖ {𝑧}) ⊆ 𝑦)
201199, 200sylib 217 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → (𝑠 ∖ {𝑧}) ⊆ 𝑦)
202 vex 3449 . . . . . . . . . . . . . . 15 𝑦 ∈ V
203202elpw2 5302 . . . . . . . . . . . . . 14 ((𝑠 ∖ {𝑧}) ∈ 𝒫 𝑦 ↔ (𝑠 ∖ {𝑧}) ⊆ 𝑦)
204201, 203sylibr 233 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → (𝑠 ∖ {𝑧}) ∈ 𝒫 𝑦)
205 elpwunsn 4644 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦) → 𝑧𝑠)
206205ad2antll 727 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑧𝑠)
207206snssd 4769 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → {𝑧} ⊆ 𝑠)
208 ssequn2 4143 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ 𝑠 ↔ (𝑠 ∪ {𝑧}) = 𝑠)
209207, 208sylib 217 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑠 ∪ {𝑧}) = 𝑠)
210209eqcomd 2742 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑠 = (𝑠 ∪ {𝑧}))
211 uneq1 4116 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑠 ∖ {𝑧}) → (𝑢 ∪ {𝑧}) = ((𝑠 ∖ {𝑧}) ∪ {𝑧}))
212 undif1 4435 . . . . . . . . . . . . . . . . 17 ((𝑠 ∖ {𝑧}) ∪ {𝑧}) = (𝑠 ∪ {𝑧})
213211, 212eqtrdi 2792 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑠 ∖ {𝑧}) → (𝑢 ∪ {𝑧}) = (𝑠 ∪ {𝑧}))
214213eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑢 = (𝑠 ∖ {𝑧}) → (𝑠 = (𝑢 ∪ {𝑧}) ↔ 𝑠 = (𝑠 ∪ {𝑧})))
215210, 214syl5ibrcom 246 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 = (𝑠 ∖ {𝑧}) → 𝑠 = (𝑢 ∪ {𝑧})))
216176ad2antrl 726 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑢𝑦)
217 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → ¬ 𝑧𝑦)
218216, 217ssneldd 3947 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → ¬ 𝑧𝑢)
219 difsnb 4766 . . . . . . . . . . . . . . . . 17 𝑧𝑢 ↔ (𝑢 ∖ {𝑧}) = 𝑢)
220218, 219sylib 217 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 ∖ {𝑧}) = 𝑢)
221220eqcomd 2742 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑢 = (𝑢 ∖ {𝑧}))
222 difeq1 4075 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑢 ∪ {𝑧}) → (𝑠 ∖ {𝑧}) = ((𝑢 ∪ {𝑧}) ∖ {𝑧}))
223 difun2 4440 . . . . . . . . . . . . . . . . 17 ((𝑢 ∪ {𝑧}) ∖ {𝑧}) = (𝑢 ∖ {𝑧})
224222, 223eqtrdi 2792 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑢 ∪ {𝑧}) → (𝑠 ∖ {𝑧}) = (𝑢 ∖ {𝑧}))
225224eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑠 = (𝑢 ∪ {𝑧}) → (𝑢 = (𝑠 ∖ {𝑧}) ↔ 𝑢 = (𝑢 ∖ {𝑧})))
226221, 225syl5ibrcom 246 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑠 = (𝑢 ∪ {𝑧}) → 𝑢 = (𝑠 ∖ {𝑧})))
227215, 226impbid 211 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 = (𝑠 ∖ {𝑧}) ↔ 𝑠 = (𝑢 ∪ {𝑧})))
228175, 194, 204, 227f1o2d 7607 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧})):𝒫 𝑦1-1-onto→(𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))
229 uneq1 4116 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → (𝑢 ∪ {𝑧}) = (𝑡 ∪ {𝑧}))
230 vex 3449 . . . . . . . . . . . . . . 15 𝑡 ∈ V
231230, 181unex 7680 . . . . . . . . . . . . . 14 (𝑡 ∪ {𝑧}) ∈ V
232229, 175, 231fvmpt 6948 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 𝑦 → ((𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))‘𝑡) = (𝑡 ∪ {𝑧}))
233232adantl 482 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑡 ∈ 𝒫 𝑦) → ((𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))‘𝑡) = (𝑡 ∪ {𝑧}))
234195, 162sylan2 593 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
235172, 174, 228, 233, 234fsumf1o 15608 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = Σ𝑡 ∈ 𝒫 𝑦((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))))
236 uneq1 4116 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → (𝑡 ∪ {𝑧}) = (𝑠 ∪ {𝑧}))
237236fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑡 = 𝑠 → (♯‘(𝑡 ∪ {𝑧})) = (♯‘(𝑠 ∪ {𝑧})))
238237oveq2d 7373 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (-1↑(♯‘(𝑡 ∪ {𝑧}))) = (-1↑(♯‘(𝑠 ∪ {𝑧}))))
239 inteq 4910 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 𝑡 = 𝑠)
240239ineq1d 4171 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ( 𝑡𝑧) = ( 𝑠𝑧))
241240ineq2d 4172 . . . . . . . . . . . . . . 15 (𝑡 = 𝑠 → (𝑥 ∩ ( 𝑡𝑧)) = (𝑥 ∩ ( 𝑠𝑧)))
242241fveq2d 6846 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (♯‘(𝑥 ∩ ( 𝑡𝑧))) = (♯‘(𝑥 ∩ ( 𝑠𝑧))))
243238, 242oveq12d 7375 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))) = ((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
244243cbvsumv 15581 . . . . . . . . . . . 12 Σ𝑡 ∈ 𝒫 𝑦((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))
24554a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → -1 ∈ ℂ)
246 elpwi 4567 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ 𝒫 𝑦𝑠𝑦)
247 ssfi 9117 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ Fin ∧ 𝑠𝑦) → 𝑠 ∈ Fin)
248142, 246, 247syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠 ∈ Fin)
249248, 152syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (♯‘𝑠) ∈ ℕ0)
250245, 249expp1d 14052 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑((♯‘𝑠) + 1)) = ((-1↑(♯‘𝑠)) · -1))
251246adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠𝑦)
252 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ¬ 𝑧𝑦)
253251, 252ssneldd 3947 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ¬ 𝑧𝑠)
254 hashunsng 14292 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ V → ((𝑠 ∈ Fin ∧ ¬ 𝑧𝑠) → (♯‘(𝑠 ∪ {𝑧})) = ((♯‘𝑠) + 1)))
255254elv 3451 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ Fin ∧ ¬ 𝑧𝑠) → (♯‘(𝑠 ∪ {𝑧})) = ((♯‘𝑠) + 1))
256248, 253, 255syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (♯‘(𝑠 ∪ {𝑧})) = ((♯‘𝑠) + 1))
257256oveq2d 7373 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘(𝑠 ∪ {𝑧}))) = (-1↑((♯‘𝑠) + 1)))
258137sseli 3940 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ 𝒫 𝑦𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
259258, 154sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘𝑠)) ∈ ℂ)
260245, 259mulcomd 11176 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1 · (-1↑(♯‘𝑠))) = ((-1↑(♯‘𝑠)) · -1))
261250, 257, 2603eqtr4d 2786 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘(𝑠 ∪ {𝑧}))) = (-1 · (-1↑(♯‘𝑠))))
262259mulm1d 11607 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1 · (-1↑(♯‘𝑠))) = -(-1↑(♯‘𝑠)))
263261, 262eqtrd 2776 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘(𝑠 ∪ {𝑧}))) = -(-1↑(♯‘𝑠)))
264263oveq1d 7372 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = (-(-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
265 inss1 4188 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∩ ( 𝑠𝑧)) ⊆ 𝑥
266 ssfi 9117 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Fin ∧ (𝑥 ∩ ( 𝑠𝑧)) ⊆ 𝑥) → (𝑥 ∩ ( 𝑠𝑧)) ∈ Fin)
267155, 265, 266sylancl 586 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (𝑥 ∩ ( 𝑠𝑧)) ∈ Fin)
268 hashcl 14256 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∩ ( 𝑠𝑧)) ∈ Fin → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℕ0)
269267, 268syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℕ0)
270269nn0cnd 12475 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℂ)
271258, 270sylan2 593 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℂ)
272259, 271mulneg1d 11608 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-(-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = -((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
273264, 272eqtrd 2776 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = -((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
274273sumeq2dv 15588 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦-((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
275244, 274eqtrid 2788 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑡 ∈ 𝒫 𝑦((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦-((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
276154, 270mulcld 11175 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
277258, 276sylan2 593 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
278174, 277fsumneg 15672 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦-((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
279235, 275, 2783eqtrd 2780 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
280279oveq2d 7373 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
281137a1i 11 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧}))
282281sselda 3944 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
283282, 162syldan 591 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
284174, 283fsumcl 15618 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
285282, 276syldan 591 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
286174, 285fsumcl 15618 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
287284, 286negsubd 11518 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
288163, 280, 2873eqtrd 2780 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
289288adantr 481 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
290101, 133, 2893eqtr4d 2786 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
291290ex 413 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
292291ralrimdva 3151 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) → ∀𝑥 ∈ Fin ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
293 ineq1 4165 . . . . . . . 8 (𝑏 = 𝑥 → (𝑏 ∩ ( 𝑦𝑧)) = (𝑥 ∩ ( 𝑦𝑧)))
294293fveq2d 6846 . . . . . . 7 (𝑏 = 𝑥 → (♯‘(𝑏 ∩ ( 𝑦𝑧))) = (♯‘(𝑥 ∩ ( 𝑦𝑧))))
29566, 294oveq12d 7375 . . . . . 6 (𝑏 = 𝑥 → ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))
296 ineq1 4165 . . . . . . . . 9 (𝑏 = 𝑥 → (𝑏 𝑠) = (𝑥 𝑠))
297296fveq2d 6846 . . . . . . . 8 (𝑏 = 𝑥 → (♯‘(𝑏 𝑠)) = (♯‘(𝑥 𝑠)))
298297oveq2d 7373 . . . . . . 7 (𝑏 = 𝑥 → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
299298sumeq2sdv 15589 . . . . . 6 (𝑏 = 𝑥 → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
300295, 299eqeq12d 2752 . . . . 5 (𝑏 = 𝑥 → (((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
301300cbvralvw 3225 . . . 4 (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑥 ∈ Fin ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
302292, 301syl6ibr 251 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) → ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
30316, 24, 37, 45, 65, 302findcard2s 9109 . 2 (𝐴 ∈ Fin → ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
304 fveq2 6842 . . . . 5 (𝑏 = 𝐵 → (♯‘𝑏) = (♯‘𝐵))
305 ineq1 4165 . . . . . 6 (𝑏 = 𝐵 → (𝑏 𝐴) = (𝐵 𝐴))
306305fveq2d 6846 . . . . 5 (𝑏 = 𝐵 → (♯‘(𝑏 𝐴)) = (♯‘(𝐵 𝐴)))
307304, 306oveq12d 7375 . . . 4 (𝑏 = 𝐵 → ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = ((♯‘𝐵) − (♯‘(𝐵 𝐴))))
308 simpl 483 . . . . . . . 8 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → 𝑏 = 𝐵)
309308ineq1d 4171 . . . . . . 7 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → (𝑏 𝑠) = (𝐵 𝑠))
310309fveq2d 6846 . . . . . 6 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → (♯‘(𝑏 𝑠)) = (♯‘(𝐵 𝑠)))
311310oveq2d 7373 . . . . 5 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
312311sumeq2dv 15588 . . . 4 (𝑏 = 𝐵 → Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
313307, 312eqeq12d 2752 . . 3 (𝑏 = 𝐵 → (((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠)))))
314313rspccva 3580 . 2 ((∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
315303, 314sylan 580 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865   cint 4907  cmpt 5188  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386  0cn0 12413  cexp 13967  chash 14230  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by:  incexc  15722
  Copyright terms: Public domain W3C validator