MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexclem Structured version   Visualization version   GIF version

Theorem incexclem 14972
Description: Lemma for incexc 14973. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexclem ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠

Proof of Theorem incexclem
Dummy variables 𝑏 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4679 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
2 uni0 4700 . . . . . . . . . . 11 ∅ = ∅
31, 2syl6eq 2830 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
43ineq2d 4037 . . . . . . . . 9 (𝑥 = ∅ → (𝑏 𝑥) = (𝑏 ∩ ∅))
5 in0 4194 . . . . . . . . 9 (𝑏 ∩ ∅) = ∅
64, 5syl6eq 2830 . . . . . . . 8 (𝑥 = ∅ → (𝑏 𝑥) = ∅)
76fveq2d 6450 . . . . . . 7 (𝑥 = ∅ → (♯‘(𝑏 𝑥)) = (♯‘∅))
8 hash0 13473 . . . . . . 7 (♯‘∅) = 0
97, 8syl6eq 2830 . . . . . 6 (𝑥 = ∅ → (♯‘(𝑏 𝑥)) = 0)
109oveq2d 6938 . . . . 5 (𝑥 = ∅ → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − 0))
11 pweq 4382 . . . . . . 7 (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅)
12 pw0 4574 . . . . . . 7 𝒫 ∅ = {∅}
1311, 12syl6eq 2830 . . . . . 6 (𝑥 = ∅ → 𝒫 𝑥 = {∅})
1413sumeq1d 14839 . . . . 5 (𝑥 = ∅ → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
1510, 14eqeq12d 2793 . . . 4 (𝑥 = ∅ → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
1615ralbidv 3168 . . 3 (𝑥 = ∅ → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
17 unieq 4679 . . . . . . . 8 (𝑥 = 𝑦 𝑥 = 𝑦)
1817ineq2d 4037 . . . . . . 7 (𝑥 = 𝑦 → (𝑏 𝑥) = (𝑏 𝑦))
1918fveq2d 6450 . . . . . 6 (𝑥 = 𝑦 → (♯‘(𝑏 𝑥)) = (♯‘(𝑏 𝑦)))
2019oveq2d 6938 . . . . 5 (𝑥 = 𝑦 → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − (♯‘(𝑏 𝑦))))
21 pweq 4382 . . . . . 6 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
2221sumeq1d 14839 . . . . 5 (𝑥 = 𝑦 → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
2320, 22eqeq12d 2793 . . . 4 (𝑥 = 𝑦 → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
2423ralbidv 3168 . . 3 (𝑥 = 𝑦 → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
25 unieq 4679 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
26 uniun 4692 . . . . . . . . . 10 (𝑦 ∪ {𝑧}) = ( 𝑦 {𝑧})
27 vex 3401 . . . . . . . . . . . 12 𝑧 ∈ V
2827unisn 4687 . . . . . . . . . . 11 {𝑧} = 𝑧
2928uneq2i 3987 . . . . . . . . . 10 ( 𝑦 {𝑧}) = ( 𝑦𝑧)
3026, 29eqtri 2802 . . . . . . . . 9 (𝑦 ∪ {𝑧}) = ( 𝑦𝑧)
3125, 30syl6eq 2830 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = ( 𝑦𝑧))
3231ineq2d 4037 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑏 𝑥) = (𝑏 ∩ ( 𝑦𝑧)))
3332fveq2d 6450 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑏 𝑥)) = (♯‘(𝑏 ∩ ( 𝑦𝑧))))
3433oveq2d 6938 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))))
35 pweq 4382 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧}))
3635sumeq1d 14839 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
3734, 36eqeq12d 2793 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
3837ralbidv 3168 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
39 unieq 4679 . . . . . . . 8 (𝑥 = 𝐴 𝑥 = 𝐴)
4039ineq2d 4037 . . . . . . 7 (𝑥 = 𝐴 → (𝑏 𝑥) = (𝑏 𝐴))
4140fveq2d 6450 . . . . . 6 (𝑥 = 𝐴 → (♯‘(𝑏 𝑥)) = (♯‘(𝑏 𝐴)))
4241oveq2d 6938 . . . . 5 (𝑥 = 𝐴 → ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = ((♯‘𝑏) − (♯‘(𝑏 𝐴))))
43 pweq 4382 . . . . . 6 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
4443sumeq1d 14839 . . . . 5 (𝑥 = 𝐴 → Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
4542, 44eqeq12d 2793 . . . 4 (𝑥 = 𝐴 → (((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
4645ralbidv 3168 . . 3 (𝑥 = 𝐴 → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
47 hashcl 13462 . . . . . . 7 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℕ0)
4847nn0cnd 11704 . . . . . 6 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℂ)
4948mulid2d 10395 . . . . 5 (𝑏 ∈ Fin → (1 · (♯‘𝑏)) = (♯‘𝑏))
50 0ex 5026 . . . . . 6 ∅ ∈ V
5149, 48eqeltrd 2859 . . . . . 6 (𝑏 ∈ Fin → (1 · (♯‘𝑏)) ∈ ℂ)
52 fveq2 6446 . . . . . . . . . . 11 (𝑠 = ∅ → (♯‘𝑠) = (♯‘∅))
5352, 8syl6eq 2830 . . . . . . . . . 10 (𝑠 = ∅ → (♯‘𝑠) = 0)
5453oveq2d 6938 . . . . . . . . 9 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = (-1↑0))
55 neg1cn 11496 . . . . . . . . . 10 -1 ∈ ℂ
56 exp0 13182 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
5755, 56ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
5854, 57syl6eq 2830 . . . . . . . 8 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = 1)
59 rint0 4750 . . . . . . . . 9 (𝑠 = ∅ → (𝑏 𝑠) = 𝑏)
6059fveq2d 6450 . . . . . . . 8 (𝑠 = ∅ → (♯‘(𝑏 𝑠)) = (♯‘𝑏))
6158, 60oveq12d 6940 . . . . . . 7 (𝑠 = ∅ → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = (1 · (♯‘𝑏)))
6261sumsn 14882 . . . . . 6 ((∅ ∈ V ∧ (1 · (♯‘𝑏)) ∈ ℂ) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = (1 · (♯‘𝑏)))
6350, 51, 62sylancr 581 . . . . 5 (𝑏 ∈ Fin → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = (1 · (♯‘𝑏)))
6448subid1d 10723 . . . . 5 (𝑏 ∈ Fin → ((♯‘𝑏) − 0) = (♯‘𝑏))
6549, 63, 643eqtr4rd 2825 . . . 4 (𝑏 ∈ Fin → ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
6665rgen 3104 . . 3 𝑏 ∈ Fin ((♯‘𝑏) − 0) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))
67 fveq2 6446 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (♯‘𝑏) = (♯‘𝑥))
68 ineq1 4030 . . . . . . . . . . . . 13 (𝑏 = 𝑥 → (𝑏 𝑦) = (𝑥 𝑦))
6968fveq2d 6450 . . . . . . . . . . . 12 (𝑏 = 𝑥 → (♯‘(𝑏 𝑦)) = (♯‘(𝑥 𝑦)))
7067, 69oveq12d 6940 . . . . . . . . . . 11 (𝑏 = 𝑥 → ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = ((♯‘𝑥) − (♯‘(𝑥 𝑦))))
71 simpl 476 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → 𝑏 = 𝑥)
7271ineq1d 4036 . . . . . . . . . . . . . 14 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → (𝑏 𝑠) = (𝑥 𝑠))
7372fveq2d 6450 . . . . . . . . . . . . 13 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → (♯‘(𝑏 𝑠)) = (♯‘(𝑥 𝑠)))
7473oveq2d 6938 . . . . . . . . . . . 12 ((𝑏 = 𝑥𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
7574sumeq2dv 14841 . . . . . . . . . . 11 (𝑏 = 𝑥 → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
7670, 75eqeq12d 2793 . . . . . . . . . 10 (𝑏 = 𝑥 → (((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑥) − (♯‘(𝑥 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
7776rspcva 3509 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
7877adantll 704 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
79 simpr 479 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝑥 ∈ Fin)
80 inss1 4053 . . . . . . . . . 10 (𝑥𝑧) ⊆ 𝑥
81 ssfi 8468 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ (𝑥𝑧) ⊆ 𝑥) → (𝑥𝑧) ∈ Fin)
8279, 80, 81sylancl 580 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑥𝑧) ∈ Fin)
83 fveq2 6446 . . . . . . . . . . . 12 (𝑏 = (𝑥𝑧) → (♯‘𝑏) = (♯‘(𝑥𝑧)))
84 ineq1 4030 . . . . . . . . . . . . . 14 (𝑏 = (𝑥𝑧) → (𝑏 𝑦) = ((𝑥𝑧) ∩ 𝑦))
85 in32 4046 . . . . . . . . . . . . . . 15 ((𝑥𝑧) ∩ 𝑦) = ((𝑥 𝑦) ∩ 𝑧)
86 inass 4044 . . . . . . . . . . . . . . 15 ((𝑥 𝑦) ∩ 𝑧) = (𝑥 ∩ ( 𝑦𝑧))
8785, 86eqtri 2802 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∩ 𝑦) = (𝑥 ∩ ( 𝑦𝑧))
8884, 87syl6eq 2830 . . . . . . . . . . . . 13 (𝑏 = (𝑥𝑧) → (𝑏 𝑦) = (𝑥 ∩ ( 𝑦𝑧)))
8988fveq2d 6450 . . . . . . . . . . . 12 (𝑏 = (𝑥𝑧) → (♯‘(𝑏 𝑦)) = (♯‘(𝑥 ∩ ( 𝑦𝑧))))
9083, 89oveq12d 6940 . . . . . . . . . . 11 (𝑏 = (𝑥𝑧) → ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))
91 ineq1 4030 . . . . . . . . . . . . . . 15 (𝑏 = (𝑥𝑧) → (𝑏 𝑠) = ((𝑥𝑧) ∩ 𝑠))
92 in32 4046 . . . . . . . . . . . . . . . 16 ((𝑥𝑧) ∩ 𝑠) = ((𝑥 𝑠) ∩ 𝑧)
93 inass 4044 . . . . . . . . . . . . . . . 16 ((𝑥 𝑠) ∩ 𝑧) = (𝑥 ∩ ( 𝑠𝑧))
9492, 93eqtri 2802 . . . . . . . . . . . . . . 15 ((𝑥𝑧) ∩ 𝑠) = (𝑥 ∩ ( 𝑠𝑧))
9591, 94syl6eq 2830 . . . . . . . . . . . . . 14 (𝑏 = (𝑥𝑧) → (𝑏 𝑠) = (𝑥 ∩ ( 𝑠𝑧)))
9695fveq2d 6450 . . . . . . . . . . . . 13 (𝑏 = (𝑥𝑧) → (♯‘(𝑏 𝑠)) = (♯‘(𝑥 ∩ ( 𝑠𝑧))))
9796oveq2d 6938 . . . . . . . . . . . 12 (𝑏 = (𝑥𝑧) → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
9897sumeq2sdv 14842 . . . . . . . . . . 11 (𝑏 = (𝑥𝑧) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
9990, 98eqeq12d 2793 . . . . . . . . . 10 (𝑏 = (𝑥𝑧) → (((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
10099rspcva 3509 . . . . . . . . 9 (((𝑥𝑧) ∈ Fin ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
10182, 100sylan 575 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
10278, 101oveq12d 6940 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
103 inss1 4053 . . . . . . . . . . . . . 14 (𝑥 𝑦) ⊆ 𝑥
104 ssfi 8468 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑥 𝑦) ⊆ 𝑥) → (𝑥 𝑦) ∈ Fin)
10579, 103, 104sylancl 580 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑥 𝑦) ∈ Fin)
106 hashcl 13462 . . . . . . . . . . . . 13 ((𝑥 𝑦) ∈ Fin → (♯‘(𝑥 𝑦)) ∈ ℕ0)
107105, 106syl 17 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 𝑦)) ∈ ℕ0)
108107nn0cnd 11704 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 𝑦)) ∈ ℂ)
109 hashcl 13462 . . . . . . . . . . . . 13 ((𝑥𝑧) ∈ Fin → (♯‘(𝑥𝑧)) ∈ ℕ0)
11082, 109syl 17 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥𝑧)) ∈ ℕ0)
111110nn0cnd 11704 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥𝑧)) ∈ ℂ)
112 inss1 4053 . . . . . . . . . . . . . 14 (𝑥 ∩ ( 𝑦𝑧)) ⊆ 𝑥
113 ssfi 8468 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑥 ∩ ( 𝑦𝑧)) ⊆ 𝑥) → (𝑥 ∩ ( 𝑦𝑧)) ∈ Fin)
11479, 112, 113sylancl 580 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑥 ∩ ( 𝑦𝑧)) ∈ Fin)
115 hashcl 13462 . . . . . . . . . . . . 13 ((𝑥 ∩ ( 𝑦𝑧)) ∈ Fin → (♯‘(𝑥 ∩ ( 𝑦𝑧))) ∈ ℕ0)
116114, 115syl 17 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) ∈ ℕ0)
117116nn0cnd 11704 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) ∈ ℂ)
118 hashun3 13488 . . . . . . . . . . . . 13 (((𝑥 𝑦) ∈ Fin ∧ (𝑥𝑧) ∈ Fin) → (♯‘((𝑥 𝑦) ∪ (𝑥𝑧))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘((𝑥 𝑦) ∩ (𝑥𝑧)))))
119105, 82, 118syl2anc 579 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘((𝑥 𝑦) ∪ (𝑥𝑧))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘((𝑥 𝑦) ∩ (𝑥𝑧)))))
120 indi 4100 . . . . . . . . . . . . 13 (𝑥 ∩ ( 𝑦𝑧)) = ((𝑥 𝑦) ∪ (𝑥𝑧))
121120fveq2i 6449 . . . . . . . . . . . 12 (♯‘(𝑥 ∩ ( 𝑦𝑧))) = (♯‘((𝑥 𝑦) ∪ (𝑥𝑧)))
122 inindi 4051 . . . . . . . . . . . . . 14 (𝑥 ∩ ( 𝑦𝑧)) = ((𝑥 𝑦) ∩ (𝑥𝑧))
123122fveq2i 6449 . . . . . . . . . . . . 13 (♯‘(𝑥 ∩ ( 𝑦𝑧))) = (♯‘((𝑥 𝑦) ∩ (𝑥𝑧)))
124123oveq2i 6933 . . . . . . . . . . . 12 (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘((𝑥 𝑦) ∩ (𝑥𝑧))))
125119, 121, 1243eqtr4g 2839 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) = (((♯‘(𝑥 𝑦)) + (♯‘(𝑥𝑧))) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))
126108, 111, 117, 125assraddsubd 10789 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘(𝑥 ∩ ( 𝑦𝑧))) = ((♯‘(𝑥 𝑦)) + ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))))
127126oveq2d 6938 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = ((♯‘𝑥) − ((♯‘(𝑥 𝑦)) + ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))))
128 hashcl 13462 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
129128adantl 475 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘𝑥) ∈ ℕ0)
130129nn0cnd 11704 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (♯‘𝑥) ∈ ℂ)
131111, 117subcld 10734 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) ∈ ℂ)
132130, 108, 131subsub4d 10765 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))) = ((♯‘𝑥) − ((♯‘(𝑥 𝑦)) + ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))))
133127, 132eqtr4d 2817 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))))
134133adantr 474 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = (((♯‘𝑥) − (♯‘(𝑥 𝑦))) − ((♯‘(𝑥𝑧)) − (♯‘(𝑥 ∩ ( 𝑦𝑧))))))
135 disjdif 4264 . . . . . . . . . . 11 (𝒫 𝑦 ∩ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = ∅
136135a1i 11 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝒫 𝑦 ∩ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = ∅)
137 ssun1 3999 . . . . . . . . . . . . . 14 𝑦 ⊆ (𝑦 ∪ {𝑧})
138 sspwb 5149 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑦 ∪ {𝑧}) ↔ 𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧}))
139137, 138mpbi 222 . . . . . . . . . . . . 13 𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧})
140 undif 4273 . . . . . . . . . . . . 13 (𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧}) ↔ (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = 𝒫 (𝑦 ∪ {𝑧}))
141139, 140mpbi 222 . . . . . . . . . . . 12 (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = 𝒫 (𝑦 ∪ {𝑧})
142141eqcomi 2787 . . . . . . . . . . 11 𝒫 (𝑦 ∪ {𝑧}) = (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))
143142a1i 11 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 (𝑦 ∪ {𝑧}) = (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)))
144 simpll 757 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝑦 ∈ Fin)
145 snfi 8326 . . . . . . . . . . . 12 {𝑧} ∈ Fin
146 unfi 8515 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
147144, 145, 146sylancl 580 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
148 pwfi 8549 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)
149147, 148sylib 210 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)
15055a1i 11 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → -1 ∈ ℂ)
151 elpwi 4389 . . . . . . . . . . . . . 14 (𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}) → 𝑠 ⊆ (𝑦 ∪ {𝑧}))
152 ssfi 8468 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝑠 ⊆ (𝑦 ∪ {𝑧})) → 𝑠 ∈ Fin)
153147, 151, 152syl2an 589 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → 𝑠 ∈ Fin)
154 hashcl 13462 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
155153, 154syl 17 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘𝑠) ∈ ℕ0)
156150, 155expcld 13327 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (-1↑(♯‘𝑠)) ∈ ℂ)
157 simplr 759 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → 𝑥 ∈ Fin)
158 inss1 4053 . . . . . . . . . . . . . 14 (𝑥 𝑠) ⊆ 𝑥
159 ssfi 8468 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑥 𝑠) ⊆ 𝑥) → (𝑥 𝑠) ∈ Fin)
160157, 158, 159sylancl 580 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (𝑥 𝑠) ∈ Fin)
161 hashcl 13462 . . . . . . . . . . . . 13 ((𝑥 𝑠) ∈ Fin → (♯‘(𝑥 𝑠)) ∈ ℕ0)
162160, 161syl 17 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 𝑠)) ∈ ℕ0)
163162nn0cnd 11704 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 𝑠)) ∈ ℂ)
164156, 163mulcld 10397 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
165136, 143, 149, 164fsumsplit 14878 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
166 fveq2 6446 . . . . . . . . . . . . . 14 (𝑠 = (𝑡 ∪ {𝑧}) → (♯‘𝑠) = (♯‘(𝑡 ∪ {𝑧})))
167166oveq2d 6938 . . . . . . . . . . . . 13 (𝑠 = (𝑡 ∪ {𝑧}) → (-1↑(♯‘𝑠)) = (-1↑(♯‘(𝑡 ∪ {𝑧}))))
168 inteq 4713 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑡 ∪ {𝑧}) → 𝑠 = (𝑡 ∪ {𝑧}))
16927intunsn 4749 . . . . . . . . . . . . . . . 16 (𝑡 ∪ {𝑧}) = ( 𝑡𝑧)
170168, 169syl6eq 2830 . . . . . . . . . . . . . . 15 (𝑠 = (𝑡 ∪ {𝑧}) → 𝑠 = ( 𝑡𝑧))
171170ineq2d 4037 . . . . . . . . . . . . . 14 (𝑠 = (𝑡 ∪ {𝑧}) → (𝑥 𝑠) = (𝑥 ∩ ( 𝑡𝑧)))
172171fveq2d 6450 . . . . . . . . . . . . 13 (𝑠 = (𝑡 ∪ {𝑧}) → (♯‘(𝑥 𝑠)) = (♯‘(𝑥 ∩ ( 𝑡𝑧))))
173167, 172oveq12d 6940 . . . . . . . . . . . 12 (𝑠 = (𝑡 ∪ {𝑧}) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = ((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))))
174 pwfi 8549 . . . . . . . . . . . . 13 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
175144, 174sylib 210 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 𝑦 ∈ Fin)
176 eqid 2778 . . . . . . . . . . . . 13 (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧})) = (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))
177 elpwi 4389 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ 𝒫 𝑦𝑢𝑦)
178177adantl 475 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → 𝑢𝑦)
179 unss1 4005 . . . . . . . . . . . . . . . 16 (𝑢𝑦 → (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧}))
180178, 179syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧}))
181 vex 3401 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
182 snex 5140 . . . . . . . . . . . . . . . . 17 {𝑧} ∈ V
183181, 182unex 7233 . . . . . . . . . . . . . . . 16 (𝑢 ∪ {𝑧}) ∈ V
184183elpw 4385 . . . . . . . . . . . . . . 15 ((𝑢 ∪ {𝑧}) ∈ 𝒫 (𝑦 ∪ {𝑧}) ↔ (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧}))
185180, 184sylibr 226 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ∈ 𝒫 (𝑦 ∪ {𝑧}))
186 simpllr 766 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ¬ 𝑧𝑦)
187 elpwi 4389 . . . . . . . . . . . . . . . 16 ((𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦 → (𝑢 ∪ {𝑧}) ⊆ 𝑦)
188 ssun2 4000 . . . . . . . . . . . . . . . . . 18 {𝑧} ⊆ (𝑢 ∪ {𝑧})
18927snss 4549 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑢 ∪ {𝑧}) ↔ {𝑧} ⊆ (𝑢 ∪ {𝑧}))
190188, 189mpbir 223 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (𝑢 ∪ {𝑧})
191190a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → 𝑧 ∈ (𝑢 ∪ {𝑧}))
192 ssel 3815 . . . . . . . . . . . . . . . 16 ((𝑢 ∪ {𝑧}) ⊆ 𝑦 → (𝑧 ∈ (𝑢 ∪ {𝑧}) → 𝑧𝑦))
193187, 191, 192syl2imc 41 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ((𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦𝑧𝑦))
194186, 193mtod 190 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ¬ (𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦)
195185, 194eldifd 3803 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))
196 eldifi 3955 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
197196adantl 475 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
198197elpwid 4391 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ⊆ (𝑦 ∪ {𝑧}))
199 uncom 3980 . . . . . . . . . . . . . . . 16 (𝑦 ∪ {𝑧}) = ({𝑧} ∪ 𝑦)
200198, 199syl6sseq 3870 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ⊆ ({𝑧} ∪ 𝑦))
201 ssundif 4276 . . . . . . . . . . . . . . 15 (𝑠 ⊆ ({𝑧} ∪ 𝑦) ↔ (𝑠 ∖ {𝑧}) ⊆ 𝑦)
202200, 201sylib 210 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → (𝑠 ∖ {𝑧}) ⊆ 𝑦)
203 vex 3401 . . . . . . . . . . . . . . 15 𝑦 ∈ V
204203elpw2 5062 . . . . . . . . . . . . . 14 ((𝑠 ∖ {𝑧}) ∈ 𝒫 𝑦 ↔ (𝑠 ∖ {𝑧}) ⊆ 𝑦)
205202, 204sylibr 226 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → (𝑠 ∖ {𝑧}) ∈ 𝒫 𝑦)
206 elpwunsn 4452 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦) → 𝑧𝑠)
207206ad2antll 719 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑧𝑠)
208207snssd 4571 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → {𝑧} ⊆ 𝑠)
209 ssequn2 4009 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ 𝑠 ↔ (𝑠 ∪ {𝑧}) = 𝑠)
210208, 209sylib 210 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑠 ∪ {𝑧}) = 𝑠)
211210eqcomd 2784 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑠 = (𝑠 ∪ {𝑧}))
212 uneq1 3983 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑠 ∖ {𝑧}) → (𝑢 ∪ {𝑧}) = ((𝑠 ∖ {𝑧}) ∪ {𝑧}))
213 undif1 4267 . . . . . . . . . . . . . . . . 17 ((𝑠 ∖ {𝑧}) ∪ {𝑧}) = (𝑠 ∪ {𝑧})
214212, 213syl6eq 2830 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑠 ∖ {𝑧}) → (𝑢 ∪ {𝑧}) = (𝑠 ∪ {𝑧}))
215214eqeq2d 2788 . . . . . . . . . . . . . . 15 (𝑢 = (𝑠 ∖ {𝑧}) → (𝑠 = (𝑢 ∪ {𝑧}) ↔ 𝑠 = (𝑠 ∪ {𝑧})))
216211, 215syl5ibrcom 239 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 = (𝑠 ∖ {𝑧}) → 𝑠 = (𝑢 ∪ {𝑧})))
217177ad2antrl 718 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑢𝑦)
218 simpllr 766 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → ¬ 𝑧𝑦)
219217, 218ssneldd 3824 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → ¬ 𝑧𝑢)
220 difsnb 4568 . . . . . . . . . . . . . . . . 17 𝑧𝑢 ↔ (𝑢 ∖ {𝑧}) = 𝑢)
221219, 220sylib 210 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 ∖ {𝑧}) = 𝑢)
222221eqcomd 2784 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑢 = (𝑢 ∖ {𝑧}))
223 difeq1 3944 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑢 ∪ {𝑧}) → (𝑠 ∖ {𝑧}) = ((𝑢 ∪ {𝑧}) ∖ {𝑧}))
224 difun2 4272 . . . . . . . . . . . . . . . . 17 ((𝑢 ∪ {𝑧}) ∖ {𝑧}) = (𝑢 ∖ {𝑧})
225223, 224syl6eq 2830 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑢 ∪ {𝑧}) → (𝑠 ∖ {𝑧}) = (𝑢 ∖ {𝑧}))
226225eqeq2d 2788 . . . . . . . . . . . . . . 15 (𝑠 = (𝑢 ∪ {𝑧}) → (𝑢 = (𝑠 ∖ {𝑧}) ↔ 𝑢 = (𝑢 ∖ {𝑧})))
227222, 226syl5ibrcom 239 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑠 = (𝑢 ∪ {𝑧}) → 𝑢 = (𝑠 ∖ {𝑧})))
228216, 227impbid 204 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 = (𝑠 ∖ {𝑧}) ↔ 𝑠 = (𝑢 ∪ {𝑧})))
229176, 195, 205, 228f1o2d 7164 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧})):𝒫 𝑦1-1-onto→(𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))
230 uneq1 3983 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → (𝑢 ∪ {𝑧}) = (𝑡 ∪ {𝑧}))
231 vex 3401 . . . . . . . . . . . . . . 15 𝑡 ∈ V
232231, 182unex 7233 . . . . . . . . . . . . . 14 (𝑡 ∪ {𝑧}) ∈ V
233230, 176, 232fvmpt 6542 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 𝑦 → ((𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))‘𝑡) = (𝑡 ∪ {𝑧}))
234233adantl 475 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑡 ∈ 𝒫 𝑦) → ((𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))‘𝑡) = (𝑡 ∪ {𝑧}))
235196, 164sylan2 586 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
236173, 175, 229, 234, 235fsumf1o 14861 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = Σ𝑡 ∈ 𝒫 𝑦((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))))
237 uneq1 3983 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → (𝑡 ∪ {𝑧}) = (𝑠 ∪ {𝑧}))
238237fveq2d 6450 . . . . . . . . . . . . . . 15 (𝑡 = 𝑠 → (♯‘(𝑡 ∪ {𝑧})) = (♯‘(𝑠 ∪ {𝑧})))
239238oveq2d 6938 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (-1↑(♯‘(𝑡 ∪ {𝑧}))) = (-1↑(♯‘(𝑠 ∪ {𝑧}))))
240 inteq 4713 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 𝑡 = 𝑠)
241240ineq1d 4036 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ( 𝑡𝑧) = ( 𝑠𝑧))
242241ineq2d 4037 . . . . . . . . . . . . . . 15 (𝑡 = 𝑠 → (𝑥 ∩ ( 𝑡𝑧)) = (𝑥 ∩ ( 𝑠𝑧)))
243242fveq2d 6450 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (♯‘(𝑥 ∩ ( 𝑡𝑧))) = (♯‘(𝑥 ∩ ( 𝑠𝑧))))
244239, 243oveq12d 6940 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))) = ((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
245244cbvsumv 14834 . . . . . . . . . . . 12 Σ𝑡 ∈ 𝒫 𝑦((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))
24655a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → -1 ∈ ℂ)
247 elpwi 4389 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ 𝒫 𝑦𝑠𝑦)
248 ssfi 8468 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ Fin ∧ 𝑠𝑦) → 𝑠 ∈ Fin)
249144, 247, 248syl2an 589 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠 ∈ Fin)
250249, 154syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (♯‘𝑠) ∈ ℕ0)
251246, 250expp1d 13328 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑((♯‘𝑠) + 1)) = ((-1↑(♯‘𝑠)) · -1))
252247adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠𝑦)
253 simpllr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ¬ 𝑧𝑦)
254252, 253ssneldd 3824 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ¬ 𝑧𝑠)
255 hashunsng 13496 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ V → ((𝑠 ∈ Fin ∧ ¬ 𝑧𝑠) → (♯‘(𝑠 ∪ {𝑧})) = ((♯‘𝑠) + 1)))
256255elv 3402 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ Fin ∧ ¬ 𝑧𝑠) → (♯‘(𝑠 ∪ {𝑧})) = ((♯‘𝑠) + 1))
257249, 254, 256syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (♯‘(𝑠 ∪ {𝑧})) = ((♯‘𝑠) + 1))
258257oveq2d 6938 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘(𝑠 ∪ {𝑧}))) = (-1↑((♯‘𝑠) + 1)))
259139sseli 3817 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ 𝒫 𝑦𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
260259, 156sylan2 586 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘𝑠)) ∈ ℂ)
261246, 260mulcomd 10398 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1 · (-1↑(♯‘𝑠))) = ((-1↑(♯‘𝑠)) · -1))
262251, 258, 2613eqtr4d 2824 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘(𝑠 ∪ {𝑧}))) = (-1 · (-1↑(♯‘𝑠))))
263260mulm1d 10827 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1 · (-1↑(♯‘𝑠))) = -(-1↑(♯‘𝑠)))
264262, 263eqtrd 2814 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(♯‘(𝑠 ∪ {𝑧}))) = -(-1↑(♯‘𝑠)))
265264oveq1d 6937 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = (-(-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
266 inss1 4053 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∩ ( 𝑠𝑧)) ⊆ 𝑥
267 ssfi 8468 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Fin ∧ (𝑥 ∩ ( 𝑠𝑧)) ⊆ 𝑥) → (𝑥 ∩ ( 𝑠𝑧)) ∈ Fin)
268157, 266, 267sylancl 580 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (𝑥 ∩ ( 𝑠𝑧)) ∈ Fin)
269 hashcl 13462 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∩ ( 𝑠𝑧)) ∈ Fin → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℕ0)
270268, 269syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℕ0)
271270nn0cnd 11704 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℂ)
272259, 271sylan2 586 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (♯‘(𝑥 ∩ ( 𝑠𝑧))) ∈ ℂ)
273260, 272mulneg1d 10828 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-(-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = -((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
274265, 273eqtrd 2814 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = -((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
275274sumeq2dv 14841 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘(𝑠 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦-((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
276245, 275syl5eq 2826 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑡 ∈ 𝒫 𝑦((-1↑(♯‘(𝑡 ∪ {𝑧}))) · (♯‘(𝑥 ∩ ( 𝑡𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦-((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
277156, 271mulcld 10397 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
278259, 277sylan2 586 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
279175, 278fsumneg 14923 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦-((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) = -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
280236, 276, 2793eqtrd 2818 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))))
281280oveq2d 6938 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
282139a1i 11 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧}))
283282sselda 3821 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}))
284283, 164syldan 585 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
285175, 284fsumcl 14871 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) ∈ ℂ)
286283, 277syldan 585 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
287175, 286fsumcl 14871 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧)))) ∈ ℂ)
288285, 287negsubd 10740 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) + -Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
289165, 281, 2883eqtrd 2818 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
290289adantr 474 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑥 ∩ ( 𝑠𝑧))))))
291102, 134, 2903eqtr4d 2824 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
292291ex 403 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑥 ∈ Fin) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) → ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
293292ralrimdva 3151 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) → ∀𝑥 ∈ Fin ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
294 ineq1 4030 . . . . . . . 8 (𝑏 = 𝑥 → (𝑏 ∩ ( 𝑦𝑧)) = (𝑥 ∩ ( 𝑦𝑧)))
295294fveq2d 6450 . . . . . . 7 (𝑏 = 𝑥 → (♯‘(𝑏 ∩ ( 𝑦𝑧))) = (♯‘(𝑥 ∩ ( 𝑦𝑧))))
29667, 295oveq12d 6940 . . . . . 6 (𝑏 = 𝑥 → ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))))
297 ineq1 4030 . . . . . . . . 9 (𝑏 = 𝑥 → (𝑏 𝑠) = (𝑥 𝑠))
298297fveq2d 6450 . . . . . . . 8 (𝑏 = 𝑥 → (♯‘(𝑏 𝑠)) = (♯‘(𝑥 𝑠)))
299298oveq2d 6938 . . . . . . 7 (𝑏 = 𝑥 → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
300299sumeq2sdv 14842 . . . . . 6 (𝑏 = 𝑥 → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
301296, 300eqeq12d 2793 . . . . 5 (𝑏 = 𝑥 → (((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠)))))
302301cbvralv 3367 . . . 4 (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ∀𝑥 ∈ Fin ((♯‘𝑥) − (♯‘(𝑥 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑥 𝑠))))
303293, 302syl6ibr 244 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) → ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 ∩ ( 𝑦𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠)))))
30416, 24, 38, 46, 66, 303findcard2s 8489 . 2 (𝐴 ∈ Fin → ∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))))
305 fveq2 6446 . . . . 5 (𝑏 = 𝐵 → (♯‘𝑏) = (♯‘𝐵))
306 ineq1 4030 . . . . . 6 (𝑏 = 𝐵 → (𝑏 𝐴) = (𝐵 𝐴))
307306fveq2d 6450 . . . . 5 (𝑏 = 𝐵 → (♯‘(𝑏 𝐴)) = (♯‘(𝐵 𝐴)))
308305, 307oveq12d 6940 . . . 4 (𝑏 = 𝐵 → ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = ((♯‘𝐵) − (♯‘(𝐵 𝐴))))
309 simpl 476 . . . . . . . 8 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → 𝑏 = 𝐵)
310309ineq1d 4036 . . . . . . 7 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → (𝑏 𝑠) = (𝐵 𝑠))
311310fveq2d 6450 . . . . . 6 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → (♯‘(𝑏 𝑠)) = (♯‘(𝐵 𝑠)))
312311oveq2d 6938 . . . . 5 ((𝑏 = 𝐵𝑠 ∈ 𝒫 𝐴) → ((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = ((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
313312sumeq2dv 14841 . . . 4 (𝑏 = 𝐵 → Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
314308, 313eqeq12d 2793 . . 3 (𝑏 = 𝐵 → (((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ↔ ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠)))))
315314rspccva 3510 . 2 ((∀𝑏 ∈ Fin ((♯‘𝑏) − (♯‘(𝑏 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝑏 𝑠))) ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
316304, 315sylan 575 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐵 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(𝐵 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  cdif 3789  cun 3790  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398   cuni 4671   cint 4710  cmpt 4965  cfv 6135  (class class class)co 6922  Fincfn 8241  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  cmin 10606  -cneg 10607  0cn0 11642  cexp 13178  chash 13435  Σcsu 14824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825
This theorem is referenced by:  incexc  14973
  Copyright terms: Public domain W3C validator