Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjorimxrn Structured version   Visualization version   GIF version

Theorem disjorimxrn 37260
Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjorimxrn (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))

Proof of Theorem disjorimxrn
StepHypRef Expression
1 dfdisjALTV2 37226 . . . . 5 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
21simplbi 499 . . . 4 ( Disj 𝑅 → ≀ 𝑅 ⊆ I )
3 dfdisjALTV2 37226 . . . . 5 ( Disj 𝑆 ↔ ( ≀ 𝑆 ⊆ I ∧ Rel 𝑆))
43simplbi 499 . . . 4 ( Disj 𝑆 → ≀ 𝑆 ⊆ I )
52, 4orim12i 908 . . 3 (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ 𝑅 ⊆ I ∨ ≀ 𝑆 ⊆ I ))
6 inss 4202 . . 3 (( ≀ 𝑅 ⊆ I ∨ ≀ 𝑆 ⊆ I ) → ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
75, 6syl 17 . 2 (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
8 disjxrn 37258 . 2 ( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
97, 8sylibr 233 1 (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  cin 3913  wss 3914   I cid 5534  ccnv 5636  Rel wrel 5642  cxrn 36683  ccoss 36684   Disj wdisjALTV 36718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-fo 6506  df-fv 6508  df-1st 7925  df-2nd 7926  df-ec 8656  df-xrn 36883  df-coss 36923  df-cnvrefrel 37039  df-disjALTV 37217
This theorem is referenced by:  disjimxrn  37261
  Copyright terms: Public domain W3C validator