Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjorimxrn | Structured version Visualization version GIF version |
Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
Ref | Expression |
---|---|
disjorimxrn | ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV2 36825 | . . . . 5 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | |
2 | 1 | simplbi 498 | . . . 4 ⊢ ( Disj 𝑅 → ≀ ◡𝑅 ⊆ I ) |
3 | dfdisjALTV2 36825 | . . . . 5 ⊢ ( Disj 𝑆 ↔ ( ≀ ◡𝑆 ⊆ I ∧ Rel 𝑆)) | |
4 | 3 | simplbi 498 | . . . 4 ⊢ ( Disj 𝑆 → ≀ ◡𝑆 ⊆ I ) |
5 | 2, 4 | orim12i 906 | . . 3 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I )) |
6 | inss 4172 | . . 3 ⊢ (( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I ) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
8 | disjxrn 36855 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∩ cin 3886 ⊆ wss 3887 I cid 5488 ◡ccnv 5588 Rel wrel 5594 ⋉ cxrn 36332 ≀ ccoss 36333 Disj wdisjALTV 36367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-ec 8500 df-xrn 36501 df-coss 36537 df-cnvrefrel 36643 df-disjALTV 36816 |
This theorem is referenced by: disjimxrn 36857 |
Copyright terms: Public domain | W3C validator |