| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjorimxrn | Structured version Visualization version GIF version | ||
| Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjorimxrn | ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjALTV2 38690 | . . . . 5 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | |
| 2 | 1 | simplbi 497 | . . . 4 ⊢ ( Disj 𝑅 → ≀ ◡𝑅 ⊆ I ) |
| 3 | dfdisjALTV2 38690 | . . . . 5 ⊢ ( Disj 𝑆 ↔ ( ≀ ◡𝑆 ⊆ I ∧ Rel 𝑆)) | |
| 4 | 3 | simplbi 497 | . . . 4 ⊢ ( Disj 𝑆 → ≀ ◡𝑆 ⊆ I ) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I )) |
| 6 | inss 4228 | . . 3 ⊢ (( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I ) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| 8 | disjxrn 38722 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
| 9 | 7, 8 | sylibr 234 | 1 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∩ cin 3930 ⊆ wss 3931 I cid 5557 ◡ccnv 5664 Rel wrel 5670 ⋉ cxrn 38156 ≀ ccoss 38157 Disj wdisjALTV 38191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-1st 7996 df-2nd 7997 df-ec 8729 df-xrn 38347 df-coss 38387 df-cnvrefrel 38503 df-disjALTV 38681 |
| This theorem is referenced by: disjimxrn 38725 |
| Copyright terms: Public domain | W3C validator |