Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjorimxrn | Structured version Visualization version GIF version |
Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
Ref | Expression |
---|---|
disjorimxrn | ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV2 36752 | . . . . 5 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | |
2 | 1 | simplbi 497 | . . . 4 ⊢ ( Disj 𝑅 → ≀ ◡𝑅 ⊆ I ) |
3 | dfdisjALTV2 36752 | . . . . 5 ⊢ ( Disj 𝑆 ↔ ( ≀ ◡𝑆 ⊆ I ∧ Rel 𝑆)) | |
4 | 3 | simplbi 497 | . . . 4 ⊢ ( Disj 𝑆 → ≀ ◡𝑆 ⊆ I ) |
5 | 2, 4 | orim12i 905 | . . 3 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I )) |
6 | inss 4169 | . . 3 ⊢ (( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I ) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
8 | disjxrn 36782 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∩ cin 3882 ⊆ wss 3883 I cid 5479 ◡ccnv 5579 Rel wrel 5585 ⋉ cxrn 36259 ≀ ccoss 36260 Disj wdisjALTV 36294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-ec 8458 df-xrn 36428 df-coss 36464 df-cnvrefrel 36570 df-disjALTV 36743 |
This theorem is referenced by: disjimxrn 36784 |
Copyright terms: Public domain | W3C validator |