Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjorimxrn Structured version   Visualization version   GIF version

Theorem disjorimxrn 38727
Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjorimxrn (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))

Proof of Theorem disjorimxrn
StepHypRef Expression
1 dfdisjALTV2 38693 . . . . 5 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
21simplbi 497 . . . 4 ( Disj 𝑅 → ≀ 𝑅 ⊆ I )
3 dfdisjALTV2 38693 . . . . 5 ( Disj 𝑆 ↔ ( ≀ 𝑆 ⊆ I ∧ Rel 𝑆))
43simplbi 497 . . . 4 ( Disj 𝑆 → ≀ 𝑆 ⊆ I )
52, 4orim12i 909 . . 3 (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ 𝑅 ⊆ I ∨ ≀ 𝑆 ⊆ I ))
6 inss 4247 . . 3 (( ≀ 𝑅 ⊆ I ∨ ≀ 𝑆 ⊆ I ) → ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
75, 6syl 17 . 2 (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
8 disjxrn 38725 . 2 ( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
97, 8sylibr 234 1 (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 848  cin 3949  wss 3950   I cid 5575  ccnv 5682  Rel wrel 5688  cxrn 38159  ccoss 38160   Disj wdisjALTV 38194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-fo 6565  df-fv 6567  df-1st 8010  df-2nd 8011  df-ec 8743  df-xrn 38350  df-coss 38390  df-cnvrefrel 38506  df-disjALTV 38684
This theorem is referenced by:  disjimxrn  38728
  Copyright terms: Public domain W3C validator