Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjorimxrn Structured version   Visualization version   GIF version

Theorem disjorimxrn 36783
Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjorimxrn (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))

Proof of Theorem disjorimxrn
StepHypRef Expression
1 dfdisjALTV2 36752 . . . . 5 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
21simplbi 497 . . . 4 ( Disj 𝑅 → ≀ 𝑅 ⊆ I )
3 dfdisjALTV2 36752 . . . . 5 ( Disj 𝑆 ↔ ( ≀ 𝑆 ⊆ I ∧ Rel 𝑆))
43simplbi 497 . . . 4 ( Disj 𝑆 → ≀ 𝑆 ⊆ I )
52, 4orim12i 905 . . 3 (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ 𝑅 ⊆ I ∨ ≀ 𝑆 ⊆ I ))
6 inss 4169 . . 3 (( ≀ 𝑅 ⊆ I ∨ ≀ 𝑆 ⊆ I ) → ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
75, 6syl 17 . 2 (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
8 disjxrn 36782 . 2 ( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
97, 8sylibr 233 1 (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  cin 3882  wss 3883   I cid 5479  ccnv 5579  Rel wrel 5585  cxrn 36259  ccoss 36260   Disj wdisjALTV 36294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-ec 8458  df-xrn 36428  df-coss 36464  df-cnvrefrel 36570  df-disjALTV 36743
This theorem is referenced by:  disjimxrn  36784
  Copyright terms: Public domain W3C validator