![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjorimxrn | Structured version Visualization version GIF version |
Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
Ref | Expression |
---|---|
disjorimxrn | ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV2 38693 | . . . . 5 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | |
2 | 1 | simplbi 497 | . . . 4 ⊢ ( Disj 𝑅 → ≀ ◡𝑅 ⊆ I ) |
3 | dfdisjALTV2 38693 | . . . . 5 ⊢ ( Disj 𝑆 ↔ ( ≀ ◡𝑆 ⊆ I ∧ Rel 𝑆)) | |
4 | 3 | simplbi 497 | . . . 4 ⊢ ( Disj 𝑆 → ≀ ◡𝑆 ⊆ I ) |
5 | 2, 4 | orim12i 909 | . . 3 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I )) |
6 | inss 4247 | . . 3 ⊢ (( ≀ ◡𝑅 ⊆ I ∨ ≀ ◡𝑆 ⊆ I ) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
8 | disjxrn 38725 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | |
9 | 7, 8 | sylibr 234 | 1 ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 848 ∩ cin 3949 ⊆ wss 3950 I cid 5575 ◡ccnv 5682 Rel wrel 5688 ⋉ cxrn 38159 ≀ ccoss 38160 Disj wdisjALTV 38194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 ax-un 7751 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-fo 6565 df-fv 6567 df-1st 8010 df-2nd 8011 df-ec 8743 df-xrn 38350 df-coss 38390 df-cnvrefrel 38506 df-disjALTV 38684 |
This theorem is referenced by: disjimxrn 38728 |
Copyright terms: Public domain | W3C validator |