| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > int-addassocd | Structured version Visualization version GIF version | ||
| Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| int-addassocd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| int-addassocd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| int-addassocd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| int-addassocd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| int-addassocd | ⊢ (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-addassocd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 11137 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | int-addassocd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | 3 | recnd 11137 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 5 | int-addassocd.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 6 | 5 | recnd 11137 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 7 | 2, 4, 6 | addassd 11131 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) + 𝐷) = (𝐴 + (𝐶 + 𝐷))) |
| 8 | int-addassocd.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 9 | 8 | oveq1d 7361 | . 2 ⊢ (𝜑 → (𝐴 + (𝐶 + 𝐷)) = (𝐵 + (𝐶 + 𝐷))) |
| 10 | 7, 9 | eqtr2d 2767 | 1 ⊢ (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11002 + caddc 11006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11060 ax-addass 11068 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |