Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-addassocd Structured version   Visualization version   GIF version

Theorem int-addassocd 44291
Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-addassocd.1 (𝜑𝐴 ∈ ℝ)
int-addassocd.2 (𝜑𝐶 ∈ ℝ)
int-addassocd.3 (𝜑𝐷 ∈ ℝ)
int-addassocd.4 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-addassocd (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷))

Proof of Theorem int-addassocd
StepHypRef Expression
1 int-addassocd.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11147 . . 3 (𝜑𝐴 ∈ ℂ)
3 int-addassocd.2 . . . 4 (𝜑𝐶 ∈ ℝ)
43recnd 11147 . . 3 (𝜑𝐶 ∈ ℂ)
5 int-addassocd.3 . . . 4 (𝜑𝐷 ∈ ℝ)
65recnd 11147 . . 3 (𝜑𝐷 ∈ ℂ)
72, 4, 6addassd 11141 . 2 (𝜑 → ((𝐴 + 𝐶) + 𝐷) = (𝐴 + (𝐶 + 𝐷)))
8 int-addassocd.4 . . 3 (𝜑𝐴 = 𝐵)
98oveq1d 7367 . 2 (𝜑 → (𝐴 + (𝐶 + 𝐷)) = (𝐵 + (𝐶 + 𝐷)))
107, 9eqtr2d 2769 1 (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  (class class class)co 7352  cr 11012   + caddc 11016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-resscn 11070  ax-addass 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator