![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-addassocd | Structured version Visualization version GIF version |
Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-addassocd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-addassocd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
int-addassocd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
int-addassocd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-addassocd | ⊢ (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-addassocd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 10358 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | int-addassocd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | recnd 10358 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
5 | int-addassocd.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
6 | 5 | recnd 10358 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
7 | 2, 4, 6 | addassd 10352 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) + 𝐷) = (𝐴 + (𝐶 + 𝐷))) |
8 | int-addassocd.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
9 | 8 | oveq1d 6894 | . 2 ⊢ (𝜑 → (𝐴 + (𝐶 + 𝐷)) = (𝐵 + (𝐶 + 𝐷))) |
10 | 7, 9 | eqtr2d 2835 | 1 ⊢ (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 (class class class)co 6879 ℝcr 10224 + caddc 10228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-resscn 10282 ax-addass 10290 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-iota 6065 df-fv 6110 df-ov 6882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |