Step | Hyp | Ref
| Expression |
1 | | cuteq0.1 |
. 2
⊢ (𝜑 → 𝐴 <<s { 0s
}) |
2 | | cuteq0.2 |
. 2
⊢ (𝜑 → { 0s }
<<s 𝐵) |
3 | | bday0s 27567 |
. . 3
⊢ ( bday ‘ 0s ) = ∅ |
4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (
bday ‘ 0s ) = ∅) |
5 | | 0sno 27565 |
. . . . . . 7
⊢
0s ∈ No |
6 | | sneq 4638 |
. . . . . . . . . . 11
⊢ (𝑦 = 0s → {𝑦} = { 0s
}) |
7 | 6 | breq2d 5160 |
. . . . . . . . . 10
⊢ (𝑦 = 0s → (𝐴 <<s {𝑦} ↔ 𝐴 <<s { 0s
})) |
8 | 6 | breq1d 5158 |
. . . . . . . . . 10
⊢ (𝑦 = 0s → ({𝑦} <<s 𝐵 ↔ { 0s } <<s 𝐵)) |
9 | 7, 8 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑦 = 0s → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s { 0s } ∧ {
0s } <<s 𝐵))) |
10 | | fveqeq2 6900 |
. . . . . . . . 9
⊢ (𝑦 = 0s → (( bday ‘𝑦) = ∅ ↔ (
bday ‘ 0s ) = ∅)) |
11 | 9, 10 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑦 = 0s → (((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) = ∅)
↔ ((𝐴 <<s {
0s } ∧ { 0s } <<s 𝐵) ∧ ( bday
‘ 0s ) = ∅))) |
12 | 11 | rspcev 3612 |
. . . . . . 7
⊢ ((
0s ∈ No ∧ ((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵) ∧ ( bday
‘ 0s ) = ∅)) → ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
13 | 5, 12 | mpan 687 |
. . . . . 6
⊢ (((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵) ∧ ( bday
‘ 0s ) = ∅) → ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
14 | 1, 2, 4, 13 | syl21anc 835 |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
15 | | bdayfn 27512 |
. . . . . . 7
⊢ bday Fn No
|
16 | | ssrab2 4077 |
. . . . . . 7
⊢ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
|
17 | | fvelimab 6964 |
. . . . . . 7
⊢ (( bday Fn No ∧ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
) → (∅ ∈ ( bday “
{𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) =
∅)) |
18 | 15, 16, 17 | mp2an 689 |
. . . . . 6
⊢ (∅
∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) =
∅) |
19 | | sneq 4638 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
20 | 19 | breq2d 5160 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {𝑦})) |
21 | 19 | breq1d 5158 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ({𝑥} <<s 𝐵 ↔ {𝑦} <<s 𝐵)) |
22 | 20, 21 | anbi12d 630 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵))) |
23 | 22 | rexrab 3692 |
. . . . . 6
⊢
(∃𝑦 ∈
{𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∅
↔ ∃𝑦 ∈
No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
24 | 18, 23 | bitri 275 |
. . . . 5
⊢ (∅
∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
25 | 14, 24 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∅ ∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |
26 | | int0el 4983 |
. . . 4
⊢ (∅
∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) → ∩
( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅) |
27 | 25, 26 | syl 17 |
. . 3
⊢ (𝜑 → ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅) |
28 | 3, 27 | eqtr4id 2790 |
. 2
⊢ (𝜑 → (
bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |
29 | 5 | elexi 3493 |
. . . . . 6
⊢
0s ∈ V |
30 | 29 | snnz 4780 |
. . . . 5
⊢ {
0s } ≠ ∅ |
31 | | sslttr 27546 |
. . . . 5
⊢ ((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅)
→ 𝐴 <<s 𝐵) |
32 | 30, 31 | mp3an3 1449 |
. . . 4
⊢ ((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵) → 𝐴 <<s 𝐵) |
33 | 1, 2, 32 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐴 <<s 𝐵) |
34 | | eqscut 27544 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 0s ∈ No ) → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ {
0s } <<s 𝐵
∧ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})))) |
35 | 33, 5, 34 | sylancl 585 |
. 2
⊢ (𝜑 → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ {
0s } <<s 𝐵
∧ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})))) |
36 | 1, 2, 28, 35 | mpbir3and 1341 |
1
⊢ (𝜑 → (𝐴 |s 𝐵) = 0s ) |