MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq0 Structured version   Visualization version   GIF version

Theorem cuteq0 27744
Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
cuteq0.1 (𝜑𝐴 <<s { 0s })
cuteq0.2 (𝜑 → { 0s } <<s 𝐵)
Assertion
Ref Expression
cuteq0 (𝜑 → (𝐴 |s 𝐵) = 0s )

Proof of Theorem cuteq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq0.1 . 2 (𝜑𝐴 <<s { 0s })
2 cuteq0.2 . 2 (𝜑 → { 0s } <<s 𝐵)
3 bday0s 27740 . . 3 ( bday ‘ 0s ) = ∅
43a1i 11 . . . . . 6 (𝜑 → ( bday ‘ 0s ) = ∅)
5 0sno 27738 . . . . . . 7 0s No
6 sneq 4599 . . . . . . . . . . 11 (𝑦 = 0s → {𝑦} = { 0s })
76breq2d 5119 . . . . . . . . . 10 (𝑦 = 0s → (𝐴 <<s {𝑦} ↔ 𝐴 <<s { 0s }))
86breq1d 5117 . . . . . . . . . 10 (𝑦 = 0s → ({𝑦} <<s 𝐵 ↔ { 0s } <<s 𝐵))
97, 8anbi12d 632 . . . . . . . . 9 (𝑦 = 0s → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵)))
10 fveqeq2 6867 . . . . . . . . 9 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
119, 10anbi12d 632 . . . . . . . 8 (𝑦 = 0s → (((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅) ↔ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)))
1211rspcev 3588 . . . . . . 7 (( 0s No ∧ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
135, 12mpan 690 . . . . . 6 (((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
141, 2, 4, 13syl21anc 837 . . . . 5 (𝜑 → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
15 bdayfn 27685 . . . . . . 7 bday Fn No
16 ssrab2 4043 . . . . . . 7 {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
17 fvelimab 6933 . . . . . . 7 (( bday Fn No ∧ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No ) → (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅))
1815, 16, 17mp2an 692 . . . . . 6 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅)
19 sneq 4599 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019breq2d 5119 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {𝑦}))
2119breq1d 5117 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s 𝐵 ↔ {𝑦} <<s 𝐵))
2220, 21anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
2322rexrab 3667 . . . . . 6 (∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅ ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2418, 23bitri 275 . . . . 5 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2514, 24sylibr 234 . . . 4 (𝜑 → ∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
26 int0el 4943 . . . 4 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) → ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
2725, 26syl 17 . . 3 (𝜑 ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
283, 27eqtr4id 2783 . 2 (𝜑 → ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
295elexi 3470 . . . . . 6 0s ∈ V
3029snnz 4740 . . . . 5 { 0s } ≠ ∅
31 sslttr 27719 . . . . 5 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅) → 𝐴 <<s 𝐵)
3230, 31mp3an3 1452 . . . 4 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) → 𝐴 <<s 𝐵)
331, 2, 32syl2anc 584 . . 3 (𝜑𝐴 <<s 𝐵)
34 eqscut 27717 . . 3 ((𝐴 <<s 𝐵 ∧ 0s No ) → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
3533, 5, 34sylancl 586 . 2 (𝜑 → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
361, 2, 28, 35mpbir3and 1343 1 (𝜑 → (𝐴 |s 𝐵) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  wss 3914  c0 4296  {csn 4589   cint 4910   class class class wbr 5107  cima 5641   Fn wfn 6506  cfv 6511  (class class class)co 7387   No csur 27551   bday cbday 27553   <<s csslt 27692   |s cscut 27694   0s c0s 27734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736
This theorem is referenced by:  cutneg  27745  negsid  27947  0reno  28348
  Copyright terms: Public domain W3C validator