MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq0 Structured version   Visualization version   GIF version

Theorem cuteq0 27781
Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
cuteq0.1 (𝜑𝐴 <<s { 0s })
cuteq0.2 (𝜑 → { 0s } <<s 𝐵)
Assertion
Ref Expression
cuteq0 (𝜑 → (𝐴 |s 𝐵) = 0s )

Proof of Theorem cuteq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq0.1 . 2 (𝜑𝐴 <<s { 0s })
2 cuteq0.2 . 2 (𝜑 → { 0s } <<s 𝐵)
3 bday0s 27777 . . 3 ( bday ‘ 0s ) = ∅
43a1i 11 . . . . . 6 (𝜑 → ( bday ‘ 0s ) = ∅)
5 0sno 27775 . . . . . . 7 0s No
6 sneq 4595 . . . . . . . . . . 11 (𝑦 = 0s → {𝑦} = { 0s })
76breq2d 5114 . . . . . . . . . 10 (𝑦 = 0s → (𝐴 <<s {𝑦} ↔ 𝐴 <<s { 0s }))
86breq1d 5112 . . . . . . . . . 10 (𝑦 = 0s → ({𝑦} <<s 𝐵 ↔ { 0s } <<s 𝐵))
97, 8anbi12d 632 . . . . . . . . 9 (𝑦 = 0s → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵)))
10 fveqeq2 6849 . . . . . . . . 9 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
119, 10anbi12d 632 . . . . . . . 8 (𝑦 = 0s → (((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅) ↔ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)))
1211rspcev 3585 . . . . . . 7 (( 0s No ∧ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
135, 12mpan 690 . . . . . 6 (((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
141, 2, 4, 13syl21anc 837 . . . . 5 (𝜑 → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
15 bdayfn 27718 . . . . . . 7 bday Fn No
16 ssrab2 4039 . . . . . . 7 {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
17 fvelimab 6915 . . . . . . 7 (( bday Fn No ∧ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No ) → (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅))
1815, 16, 17mp2an 692 . . . . . 6 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅)
19 sneq 4595 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019breq2d 5114 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {𝑦}))
2119breq1d 5112 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s 𝐵 ↔ {𝑦} <<s 𝐵))
2220, 21anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
2322rexrab 3664 . . . . . 6 (∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅ ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2418, 23bitri 275 . . . . 5 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2514, 24sylibr 234 . . . 4 (𝜑 → ∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
26 int0el 4939 . . . 4 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) → ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
2725, 26syl 17 . . 3 (𝜑 ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
283, 27eqtr4id 2783 . 2 (𝜑 → ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
295elexi 3467 . . . . . 6 0s ∈ V
3029snnz 4736 . . . . 5 { 0s } ≠ ∅
31 sslttr 27753 . . . . 5 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅) → 𝐴 <<s 𝐵)
3230, 31mp3an3 1452 . . . 4 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) → 𝐴 <<s 𝐵)
331, 2, 32syl2anc 584 . . 3 (𝜑𝐴 <<s 𝐵)
34 eqscut 27751 . . 3 ((𝐴 <<s 𝐵 ∧ 0s No ) → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
3533, 5, 34sylancl 586 . 2 (𝜑 → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
361, 2, 28, 35mpbir3and 1343 1 (𝜑 → (𝐴 |s 𝐵) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402  wss 3911  c0 4292  {csn 4585   cint 4906   class class class wbr 5102  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369   No csur 27584   bday cbday 27586   <<s csslt 27726   |s cscut 27728   0s c0s 27771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sslt 27727  df-scut 27729  df-0s 27773
This theorem is referenced by:  cutneg  27782  negsid  27987  0reno  28401
  Copyright terms: Public domain W3C validator