MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq0 Structured version   Visualization version   GIF version

Theorem cuteq0 27776
Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
cuteq0.1 (𝜑𝐴 <<s { 0s })
cuteq0.2 (𝜑 → { 0s } <<s 𝐵)
Assertion
Ref Expression
cuteq0 (𝜑 → (𝐴 |s 𝐵) = 0s )

Proof of Theorem cuteq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq0.1 . 2 (𝜑𝐴 <<s { 0s })
2 cuteq0.2 . 2 (𝜑 → { 0s } <<s 𝐵)
3 bday0s 27772 . . 3 ( bday ‘ 0s ) = ∅
43a1i 11 . . . . . 6 (𝜑 → ( bday ‘ 0s ) = ∅)
5 0sno 27770 . . . . . . 7 0s No
6 sneq 4583 . . . . . . . . . . 11 (𝑦 = 0s → {𝑦} = { 0s })
76breq2d 5101 . . . . . . . . . 10 (𝑦 = 0s → (𝐴 <<s {𝑦} ↔ 𝐴 <<s { 0s }))
86breq1d 5099 . . . . . . . . . 10 (𝑦 = 0s → ({𝑦} <<s 𝐵 ↔ { 0s } <<s 𝐵))
97, 8anbi12d 632 . . . . . . . . 9 (𝑦 = 0s → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵)))
10 fveqeq2 6831 . . . . . . . . 9 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
119, 10anbi12d 632 . . . . . . . 8 (𝑦 = 0s → (((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅) ↔ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)))
1211rspcev 3572 . . . . . . 7 (( 0s No ∧ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
135, 12mpan 690 . . . . . 6 (((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
141, 2, 4, 13syl21anc 837 . . . . 5 (𝜑 → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
15 bdayfn 27712 . . . . . . 7 bday Fn No
16 ssrab2 4027 . . . . . . 7 {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
17 fvelimab 6894 . . . . . . 7 (( bday Fn No ∧ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No ) → (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅))
1815, 16, 17mp2an 692 . . . . . 6 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅)
19 sneq 4583 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019breq2d 5101 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {𝑦}))
2119breq1d 5099 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s 𝐵 ↔ {𝑦} <<s 𝐵))
2220, 21anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
2322rexrab 3650 . . . . . 6 (∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅ ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2418, 23bitri 275 . . . . 5 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2514, 24sylibr 234 . . . 4 (𝜑 → ∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
26 int0el 4927 . . . 4 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) → ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
2725, 26syl 17 . . 3 (𝜑 ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
283, 27eqtr4id 2785 . 2 (𝜑 → ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
295elexi 3459 . . . . . 6 0s ∈ V
3029snnz 4726 . . . . 5 { 0s } ≠ ∅
31 sslttr 27748 . . . . 5 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅) → 𝐴 <<s 𝐵)
3230, 31mp3an3 1452 . . . 4 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) → 𝐴 <<s 𝐵)
331, 2, 32syl2anc 584 . . 3 (𝜑𝐴 <<s 𝐵)
34 eqscut 27746 . . 3 ((𝐴 <<s 𝐵 ∧ 0s No ) → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
3533, 5, 34sylancl 586 . 2 (𝜑 → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
361, 2, 28, 35mpbir3and 1343 1 (𝜑 → (𝐴 |s 𝐵) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  wss 3897  c0 4280  {csn 4573   cint 4895   class class class wbr 5089  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346   No csur 27578   bday cbday 27580   <<s csslt 27720   |s cscut 27722   0s c0s 27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-0s 27768
This theorem is referenced by:  cutneg  27777  negsid  27983  0reno  28399
  Copyright terms: Public domain W3C validator