| Step | Hyp | Ref
| Expression |
| 1 | | cuteq0.1 |
. 2
⊢ (𝜑 → 𝐴 <<s { 0s
}) |
| 2 | | cuteq0.2 |
. 2
⊢ (𝜑 → { 0s }
<<s 𝐵) |
| 3 | | bday0s 27797 |
. . 3
⊢ ( bday ‘ 0s ) = ∅ |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (
bday ‘ 0s ) = ∅) |
| 5 | | 0sno 27795 |
. . . . . . 7
⊢
0s ∈ No |
| 6 | | sneq 4616 |
. . . . . . . . . . 11
⊢ (𝑦 = 0s → {𝑦} = { 0s
}) |
| 7 | 6 | breq2d 5136 |
. . . . . . . . . 10
⊢ (𝑦 = 0s → (𝐴 <<s {𝑦} ↔ 𝐴 <<s { 0s
})) |
| 8 | 6 | breq1d 5134 |
. . . . . . . . . 10
⊢ (𝑦 = 0s → ({𝑦} <<s 𝐵 ↔ { 0s } <<s 𝐵)) |
| 9 | 7, 8 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑦 = 0s → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s { 0s } ∧ {
0s } <<s 𝐵))) |
| 10 | | fveqeq2 6890 |
. . . . . . . . 9
⊢ (𝑦 = 0s → (( bday ‘𝑦) = ∅ ↔ (
bday ‘ 0s ) = ∅)) |
| 11 | 9, 10 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑦 = 0s → (((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) = ∅)
↔ ((𝐴 <<s {
0s } ∧ { 0s } <<s 𝐵) ∧ ( bday
‘ 0s ) = ∅))) |
| 12 | 11 | rspcev 3606 |
. . . . . . 7
⊢ ((
0s ∈ No ∧ ((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵) ∧ ( bday
‘ 0s ) = ∅)) → ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
| 13 | 5, 12 | mpan 690 |
. . . . . 6
⊢ (((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵) ∧ ( bday
‘ 0s ) = ∅) → ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
| 14 | 1, 2, 4, 13 | syl21anc 837 |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
| 15 | | bdayfn 27742 |
. . . . . . 7
⊢ bday Fn No
|
| 16 | | ssrab2 4060 |
. . . . . . 7
⊢ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
|
| 17 | | fvelimab 6956 |
. . . . . . 7
⊢ (( bday Fn No ∧ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
) → (∅ ∈ ( bday “
{𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) =
∅)) |
| 18 | 15, 16, 17 | mp2an 692 |
. . . . . 6
⊢ (∅
∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) =
∅) |
| 19 | | sneq 4616 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 20 | 19 | breq2d 5136 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {𝑦})) |
| 21 | 19 | breq1d 5134 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ({𝑥} <<s 𝐵 ↔ {𝑦} <<s 𝐵)) |
| 22 | 20, 21 | anbi12d 632 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵))) |
| 23 | 22 | rexrab 3684 |
. . . . . 6
⊢
(∃𝑦 ∈
{𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∅
↔ ∃𝑦 ∈
No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
| 24 | 18, 23 | bitri 275 |
. . . . 5
⊢ (∅
∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ No
((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday
‘𝑦) =
∅)) |
| 25 | 14, 24 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∅ ∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |
| 26 | | int0el 4960 |
. . . 4
⊢ (∅
∈ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) → ∩
( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅) |
| 27 | 25, 26 | syl 17 |
. . 3
⊢ (𝜑 → ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅) |
| 28 | 3, 27 | eqtr4id 2790 |
. 2
⊢ (𝜑 → (
bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |
| 29 | 5 | elexi 3487 |
. . . . . 6
⊢
0s ∈ V |
| 30 | 29 | snnz 4757 |
. . . . 5
⊢ {
0s } ≠ ∅ |
| 31 | | sslttr 27776 |
. . . . 5
⊢ ((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅)
→ 𝐴 <<s 𝐵) |
| 32 | 30, 31 | mp3an3 1452 |
. . . 4
⊢ ((𝐴 <<s { 0s }
∧ { 0s } <<s 𝐵) → 𝐴 <<s 𝐵) |
| 33 | 1, 2, 32 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝐴 <<s 𝐵) |
| 34 | | eqscut 27774 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 0s ∈ No ) → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ {
0s } <<s 𝐵
∧ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})))) |
| 35 | 33, 5, 34 | sylancl 586 |
. 2
⊢ (𝜑 → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ {
0s } <<s 𝐵
∧ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})))) |
| 36 | 1, 2, 28, 35 | mpbir3and 1343 |
1
⊢ (𝜑 → (𝐴 |s 𝐵) = 0s ) |