MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq0 Structured version   Visualization version   GIF version

Theorem cuteq0 27895
Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
cuteq0.1 (𝜑𝐴 <<s { 0s })
cuteq0.2 (𝜑 → { 0s } <<s 𝐵)
Assertion
Ref Expression
cuteq0 (𝜑 → (𝐴 |s 𝐵) = 0s )

Proof of Theorem cuteq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq0.1 . 2 (𝜑𝐴 <<s { 0s })
2 cuteq0.2 . 2 (𝜑 → { 0s } <<s 𝐵)
3 bday0s 27891 . . 3 ( bday ‘ 0s ) = ∅
43a1i 11 . . . . . 6 (𝜑 → ( bday ‘ 0s ) = ∅)
5 0sno 27889 . . . . . . 7 0s No
6 sneq 4658 . . . . . . . . . . 11 (𝑦 = 0s → {𝑦} = { 0s })
76breq2d 5178 . . . . . . . . . 10 (𝑦 = 0s → (𝐴 <<s {𝑦} ↔ 𝐴 <<s { 0s }))
86breq1d 5176 . . . . . . . . . 10 (𝑦 = 0s → ({𝑦} <<s 𝐵 ↔ { 0s } <<s 𝐵))
97, 8anbi12d 631 . . . . . . . . 9 (𝑦 = 0s → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵)))
10 fveqeq2 6929 . . . . . . . . 9 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
119, 10anbi12d 631 . . . . . . . 8 (𝑦 = 0s → (((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅) ↔ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)))
1211rspcev 3635 . . . . . . 7 (( 0s No ∧ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
135, 12mpan 689 . . . . . 6 (((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
141, 2, 4, 13syl21anc 837 . . . . 5 (𝜑 → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
15 bdayfn 27836 . . . . . . 7 bday Fn No
16 ssrab2 4103 . . . . . . 7 {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
17 fvelimab 6994 . . . . . . 7 (( bday Fn No ∧ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No ) → (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅))
1815, 16, 17mp2an 691 . . . . . 6 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅)
19 sneq 4658 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019breq2d 5178 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {𝑦}))
2119breq1d 5176 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s 𝐵 ↔ {𝑦} <<s 𝐵))
2220, 21anbi12d 631 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
2322rexrab 3718 . . . . . 6 (∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅ ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2418, 23bitri 275 . . . . 5 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2514, 24sylibr 234 . . . 4 (𝜑 → ∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
26 int0el 5003 . . . 4 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) → ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
2725, 26syl 17 . . 3 (𝜑 ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
283, 27eqtr4id 2799 . 2 (𝜑 → ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
295elexi 3511 . . . . . 6 0s ∈ V
3029snnz 4801 . . . . 5 { 0s } ≠ ∅
31 sslttr 27870 . . . . 5 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅) → 𝐴 <<s 𝐵)
3230, 31mp3an3 1450 . . . 4 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) → 𝐴 <<s 𝐵)
331, 2, 32syl2anc 583 . . 3 (𝜑𝐴 <<s 𝐵)
34 eqscut 27868 . . 3 ((𝐴 <<s 𝐵 ∧ 0s No ) → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
3533, 5, 34sylancl 585 . 2 (𝜑 → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
361, 2, 28, 35mpbir3and 1342 1 (𝜑 → (𝐴 |s 𝐵) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352  {csn 4648   cint 4970   class class class wbr 5166  cima 5703   Fn wfn 6568  cfv 6573  (class class class)co 7448   No csur 27702   bday cbday 27704   <<s csslt 27843   |s cscut 27845   0s c0s 27885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887
This theorem is referenced by:  negsid  28091  n0scut  28356  0reno  28447
  Copyright terms: Public domain W3C validator