MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq0 Structured version   Visualization version   GIF version

Theorem cuteq0 27801
Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
cuteq0.1 (𝜑𝐴 <<s { 0s })
cuteq0.2 (𝜑 → { 0s } <<s 𝐵)
Assertion
Ref Expression
cuteq0 (𝜑 → (𝐴 |s 𝐵) = 0s )

Proof of Theorem cuteq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq0.1 . 2 (𝜑𝐴 <<s { 0s })
2 cuteq0.2 . 2 (𝜑 → { 0s } <<s 𝐵)
3 bday0s 27797 . . 3 ( bday ‘ 0s ) = ∅
43a1i 11 . . . . . 6 (𝜑 → ( bday ‘ 0s ) = ∅)
5 0sno 27795 . . . . . . 7 0s No
6 sneq 4616 . . . . . . . . . . 11 (𝑦 = 0s → {𝑦} = { 0s })
76breq2d 5136 . . . . . . . . . 10 (𝑦 = 0s → (𝐴 <<s {𝑦} ↔ 𝐴 <<s { 0s }))
86breq1d 5134 . . . . . . . . . 10 (𝑦 = 0s → ({𝑦} <<s 𝐵 ↔ { 0s } <<s 𝐵))
97, 8anbi12d 632 . . . . . . . . 9 (𝑦 = 0s → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵)))
10 fveqeq2 6890 . . . . . . . . 9 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
119, 10anbi12d 632 . . . . . . . 8 (𝑦 = 0s → (((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅) ↔ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)))
1211rspcev 3606 . . . . . . 7 (( 0s No ∧ ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅)) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
135, 12mpan 690 . . . . . 6 (((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
141, 2, 4, 13syl21anc 837 . . . . 5 (𝜑 → ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
15 bdayfn 27742 . . . . . . 7 bday Fn No
16 ssrab2 4060 . . . . . . 7 {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No
17 fvelimab 6956 . . . . . . 7 (( bday Fn No ∧ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ⊆ No ) → (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅))
1815, 16, 17mp2an 692 . . . . . 6 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅)
19 sneq 4616 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019breq2d 5136 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {𝑦}))
2119breq1d 5134 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s 𝐵 ↔ {𝑦} <<s 𝐵))
2220, 21anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
2322rexrab 3684 . . . . . 6 (∃𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ∅ ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2418, 23bitri 275 . . . . 5 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ∃𝑦 No ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ∧ ( bday 𝑦) = ∅))
2514, 24sylibr 234 . . . 4 (𝜑 → ∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
26 int0el 4960 . . . 4 (∅ ∈ ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) → ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
2725, 26syl 17 . . 3 (𝜑 ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) = ∅)
283, 27eqtr4id 2790 . 2 (𝜑 → ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
295elexi 3487 . . . . . 6 0s ∈ V
3029snnz 4757 . . . . 5 { 0s } ≠ ∅
31 sslttr 27776 . . . . 5 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ { 0s } ≠ ∅) → 𝐴 <<s 𝐵)
3230, 31mp3an3 1452 . . . 4 ((𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵) → 𝐴 <<s 𝐵)
331, 2, 32syl2anc 584 . . 3 (𝜑𝐴 <<s 𝐵)
34 eqscut 27774 . . 3 ((𝐴 <<s 𝐵 ∧ 0s No ) → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
3533, 5, 34sylancl 586 . 2 (𝜑 → ((𝐴 |s 𝐵) = 0s ↔ (𝐴 <<s { 0s } ∧ { 0s } <<s 𝐵 ∧ ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))))
361, 2, 28, 35mpbir3and 1343 1 (𝜑 → (𝐴 |s 𝐵) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  {crab 3420  wss 3931  c0 4313  {csn 4606   cint 4927   class class class wbr 5124  cima 5662   Fn wfn 6531  cfv 6536  (class class class)co 7410   No csur 27608   bday cbday 27610   <<s csslt 27749   |s cscut 27751   0s c0s 27791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793
This theorem is referenced by:  cutneg  27802  negsid  28004  0reno  28405
  Copyright terms: Public domain W3C validator