| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onint0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| onint0 | ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5245 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 2 | eleq1 2819 | . . . . . . 7 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ ∅ ∈ V)) | |
| 3 | 1, 2 | mpbiri 258 | . . . . . 6 ⊢ (∩ 𝐴 = ∅ → ∩ 𝐴 ∈ V) |
| 4 | intex 5282 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
| 5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → 𝐴 ≠ ∅) |
| 6 | onint 7723 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
| 7 | 5, 6 | sylan2 593 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∩ 𝐴 ∈ 𝐴) |
| 8 | eleq1 2819 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
| 10 | 7, 9 | mpbid 232 | . . 3 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∅ ∈ 𝐴) |
| 11 | 10 | ex 412 | . 2 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ → ∅ ∈ 𝐴)) |
| 12 | int0el 4929 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) | |
| 13 | 11, 12 | impbid1 225 | 1 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 ∩ cint 4897 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: cfeq0 10144 |
| Copyright terms: Public domain | W3C validator |