Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onint0 | Structured version Visualization version GIF version |
Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
onint0 | ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5234 | . . . . . . 7 ⊢ ∅ ∈ V | |
2 | eleq1 2827 | . . . . . . 7 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ ∅ ∈ V)) | |
3 | 1, 2 | mpbiri 257 | . . . . . 6 ⊢ (∩ 𝐴 = ∅ → ∩ 𝐴 ∈ V) |
4 | intex 5264 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 233 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → 𝐴 ≠ ∅) |
6 | onint 7630 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
7 | 5, 6 | sylan2 592 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∩ 𝐴 ∈ 𝐴) |
8 | eleq1 2827 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) | |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
10 | 7, 9 | mpbid 231 | . . 3 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∅ ∈ 𝐴) |
11 | 10 | ex 412 | . 2 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ → ∅ ∈ 𝐴)) |
12 | int0el 4915 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) | |
13 | 11, 12 | impbid1 224 | 1 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 Vcvv 3430 ⊆ wss 3891 ∅c0 4261 ∩ cint 4884 Oncon0 6263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 df-on 6267 |
This theorem is referenced by: cfeq0 9996 |
Copyright terms: Public domain | W3C validator |