![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onint0 | Structured version Visualization version GIF version |
Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
onint0 | ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4985 | . . . . . . 7 ⊢ ∅ ∈ V | |
2 | eleq1 2867 | . . . . . . 7 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ ∅ ∈ V)) | |
3 | 1, 2 | mpbiri 250 | . . . . . 6 ⊢ (∩ 𝐴 = ∅ → ∩ 𝐴 ∈ V) |
4 | intex 5013 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 226 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → 𝐴 ≠ ∅) |
6 | onint 7230 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
7 | 5, 6 | sylan2 587 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∩ 𝐴 ∈ 𝐴) |
8 | eleq1 2867 | . . . . 5 ⊢ (∩ 𝐴 = ∅ → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) | |
9 | 8 | adantl 474 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → (∩ 𝐴 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
10 | 7, 9 | mpbid 224 | . . 3 ⊢ ((𝐴 ⊆ On ∧ ∩ 𝐴 = ∅) → ∅ ∈ 𝐴) |
11 | 10 | ex 402 | . 2 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ → ∅ ∈ 𝐴)) |
12 | int0el 4699 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) | |
13 | 11, 12 | impbid1 217 | 1 ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 Vcvv 3386 ⊆ wss 3770 ∅c0 4116 ∩ cint 4668 Oncon0 5942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-br 4845 df-opab 4907 df-tr 4947 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-ord 5945 df-on 5946 |
This theorem is referenced by: cfeq0 9367 |
Copyright terms: Public domain | W3C validator |