MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onint0 Structured version   Visualization version   GIF version

Theorem onint0 7231
Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
onint0 (𝐴 ⊆ On → ( 𝐴 = ∅ ↔ ∅ ∈ 𝐴))

Proof of Theorem onint0
StepHypRef Expression
1 0ex 4985 . . . . . . 7 ∅ ∈ V
2 eleq1 2867 . . . . . . 7 ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 250 . . . . . 6 ( 𝐴 = ∅ → 𝐴 ∈ V)
4 intex 5013 . . . . . 6 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
53, 4sylibr 226 . . . . 5 ( 𝐴 = ∅ → 𝐴 ≠ ∅)
6 onint 7230 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
75, 6sylan2 587 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 = ∅) → 𝐴𝐴)
8 eleq1 2867 . . . . 5 ( 𝐴 = ∅ → ( 𝐴𝐴 ↔ ∅ ∈ 𝐴))
98adantl 474 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 = ∅) → ( 𝐴𝐴 ↔ ∅ ∈ 𝐴))
107, 9mpbid 224 . . 3 ((𝐴 ⊆ On ∧ 𝐴 = ∅) → ∅ ∈ 𝐴)
1110ex 402 . 2 (𝐴 ⊆ On → ( 𝐴 = ∅ → ∅ ∈ 𝐴))
12 int0el 4699 . 2 (∅ ∈ 𝐴 𝐴 = ∅)
1311, 12impbid1 217 1 (𝐴 ⊆ On → ( 𝐴 = ∅ ↔ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wne 2972  Vcvv 3386  wss 3770  c0 4116   cint 4668  Oncon0 5942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-br 4845  df-opab 4907  df-tr 4947  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-ord 5945  df-on 5946
This theorem is referenced by:  cfeq0  9367
  Copyright terms: Public domain W3C validator