Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inton | Structured version Visualization version GIF version |
Description: The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
Ref | Expression |
---|---|
inton | ⊢ ∩ On = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6323 | . 2 ⊢ ∅ ∈ On | |
2 | int0el 4913 | . 2 ⊢ (∅ ∈ On → ∩ On = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ On = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 ∅c0 4259 ∩ cint 4882 Oncon0 6270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-11 2149 ax-ext 2704 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-br 5078 df-tr 5195 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-ord 6273 df-on 6274 |
This theorem is referenced by: bday0s 34050 |
Copyright terms: Public domain | W3C validator |