| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inton | Structured version Visualization version GIF version | ||
| Description: The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
| Ref | Expression |
|---|---|
| inton | ⊢ ∩ On = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6375 | . 2 ⊢ ∅ ∈ On | |
| 2 | int0el 4939 | . 2 ⊢ (∅ ∈ On → ∩ On = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ On = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4292 ∩ cint 4906 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-tr 5210 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: bday0s 27716 |
| Copyright terms: Public domain | W3C validator |