MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inton Structured version   Visualization version   GIF version

Theorem inton 6379
Description: The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.)
Assertion
Ref Expression
inton On = ∅

Proof of Theorem inton
StepHypRef Expression
1 0elon 6375 . 2 ∅ ∈ On
2 int0el 4939 . 2 (∅ ∈ On → On = ∅)
31, 2ax-mp 5 1 On = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  c0 4292   cint 4906  Oncon0 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-tr 5210  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324
This theorem is referenced by:  bday0s  27716
  Copyright terms: Public domain W3C validator