![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inton | Structured version Visualization version GIF version |
Description: The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
Ref | Expression |
---|---|
inton | ⊢ ∩ On = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 5995 | . 2 ⊢ ∅ ∈ On | |
2 | int0el 4699 | . 2 ⊢ (∅ ∈ On → ∩ On = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ On = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ∅c0 4116 ∩ cint 4668 Oncon0 5942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-nul 4984 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-in 3777 df-ss 3784 df-nul 4117 df-pw 4352 df-uni 4630 df-int 4669 df-tr 4947 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-ord 5945 df-on 5946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |