Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub00 | Structured version Visualization version GIF version |
Description: The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
ipoglb0.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub00.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
ipolub00.f | ⊢ (𝜑 → ∅ ∈ 𝐹) |
Ref | Expression |
---|---|
ipolub00 | ⊢ (𝜑 → (𝑈‘∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipoglb0.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
2 | ipolub00.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
4 | ipolub00.f | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝐹) | |
5 | int0el 4907 | . . . . . . 7 ⊢ (∅ ∈ 𝐹 → ∩ 𝐹 = ∅) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∩ 𝐹 = ∅) |
7 | 6, 4 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → ∩ 𝐹 ∈ 𝐹) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 ∈ 𝐹) |
9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐹 ∈ V) | |
10 | 1, 3, 8, 9 | ipolub0 46166 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∩ 𝐹) |
11 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 = ∅) |
12 | 10, 11 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
13 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
14 | fvprc 6748 | . . . . . . . 8 ⊢ (¬ 𝐹 ∈ V → (toInc‘𝐹) = ∅) | |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (toInc‘𝐹) = ∅) |
16 | 1, 15 | syl5eq 2791 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝐼 = ∅) |
17 | 16 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (lub‘𝐼) = (lub‘∅)) |
18 | 13, 17 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘∅)) |
19 | 18 | fveq1d 6758 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ((lub‘∅)‘∅)) |
20 | rex0 4288 | . . . . . 6 ⊢ ¬ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) | |
21 | 20 | intnan 486 | . . . . 5 ⊢ ¬ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) |
22 | base0 16845 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
23 | eqid 2738 | . . . . . 6 ⊢ (le‘∅) = (le‘∅) | |
24 | eqid 2738 | . . . . . 6 ⊢ (lub‘∅) = (lub‘∅) | |
25 | biid 260 | . . . . . 6 ⊢ ((∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) | |
26 | 0pos 17954 | . . . . . . 7 ⊢ ∅ ∈ Poset | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ∅ ∈ Poset) |
28 | 22, 23, 24, 25, 27 | lubeldm2 46138 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (∅ ∈ dom (lub‘∅) ↔ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))))) |
29 | 21, 28 | mtbiri 326 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ¬ ∅ ∈ dom (lub‘∅)) |
30 | ndmfv 6786 | . . . 4 ⊢ (¬ ∅ ∈ dom (lub‘∅) → ((lub‘∅)‘∅) = ∅) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ((lub‘∅)‘∅) = ∅) |
32 | 19, 31 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
33 | 12, 32 | pm2.61dan 809 | 1 ⊢ (𝜑 → (𝑈‘∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 lecple 16895 Posetcpo 17940 lubclub 17942 toInccipo 18160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-proset 17928 df-poset 17946 df-lub 17979 df-ipo 18161 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |