Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub00 | Structured version Visualization version GIF version |
Description: The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
ipoglb0.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub00.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
ipolub00.f | ⊢ (𝜑 → ∅ ∈ 𝐹) |
Ref | Expression |
---|---|
ipolub00 | ⊢ (𝜑 → (𝑈‘∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipoglb0.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
2 | ipolub00.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
3 | 2 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
4 | ipolub00.f | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝐹) | |
5 | int0el 4910 | . . . . . . 7 ⊢ (∅ ∈ 𝐹 → ∩ 𝐹 = ∅) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∩ 𝐹 = ∅) |
7 | 6, 4 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → ∩ 𝐹 ∈ 𝐹) |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 ∈ 𝐹) |
9 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐹 ∈ V) | |
10 | 1, 3, 8, 9 | ipolub0 46256 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∩ 𝐹) |
11 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 = ∅) |
12 | 10, 11 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
13 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
14 | fvprc 6758 | . . . . . . . 8 ⊢ (¬ 𝐹 ∈ V → (toInc‘𝐹) = ∅) | |
15 | 14 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (toInc‘𝐹) = ∅) |
16 | 1, 15 | eqtrid 2790 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝐼 = ∅) |
17 | 16 | fveq2d 6770 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (lub‘𝐼) = (lub‘∅)) |
18 | 13, 17 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘∅)) |
19 | 18 | fveq1d 6768 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ((lub‘∅)‘∅)) |
20 | rex0 4291 | . . . . . 6 ⊢ ¬ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) | |
21 | 20 | intnan 487 | . . . . 5 ⊢ ¬ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) |
22 | base0 16927 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
23 | eqid 2738 | . . . . . 6 ⊢ (le‘∅) = (le‘∅) | |
24 | eqid 2738 | . . . . . 6 ⊢ (lub‘∅) = (lub‘∅) | |
25 | biid 260 | . . . . . 6 ⊢ ((∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) | |
26 | 0pos 18049 | . . . . . . 7 ⊢ ∅ ∈ Poset | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ∅ ∈ Poset) |
28 | 22, 23, 24, 25, 27 | lubeldm2 46228 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (∅ ∈ dom (lub‘∅) ↔ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))))) |
29 | 21, 28 | mtbiri 327 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ¬ ∅ ∈ dom (lub‘∅)) |
30 | ndmfv 6796 | . . . 4 ⊢ (¬ ∅ ∈ dom (lub‘∅) → ((lub‘∅)‘∅) = ∅) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ((lub‘∅)‘∅) = ∅) |
32 | 19, 31 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
33 | 12, 32 | pm2.61dan 810 | 1 ⊢ (𝜑 → (𝑈‘∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3429 ⊆ wss 3886 ∅c0 4256 ∩ cint 4879 class class class wbr 5073 dom cdm 5584 ‘cfv 6426 lecple 16979 Posetcpo 18035 lubclub 18037 toInccipo 18255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-struct 16858 df-slot 16893 df-ndx 16905 df-base 16923 df-tset 16991 df-ple 16992 df-ocomp 16993 df-proset 18023 df-poset 18041 df-lub 18074 df-ipo 18256 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |