| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub00 | Structured version Visualization version GIF version | ||
| Description: The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipoglb0.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub00.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
| ipolub00.f | ⊢ (𝜑 → ∅ ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipolub00 | ⊢ (𝜑 → (𝑈‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoglb0.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 2 | ipolub00.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
| 4 | ipolub00.f | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝐹) | |
| 5 | int0el 4943 | . . . . . . 7 ⊢ (∅ ∈ 𝐹 → ∩ 𝐹 = ∅) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∩ 𝐹 = ∅) |
| 7 | 6, 4 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → ∩ 𝐹 ∈ 𝐹) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 ∈ 𝐹) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐹 ∈ V) | |
| 10 | 1, 3, 8, 9 | ipolub0 48980 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∩ 𝐹) |
| 11 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 = ∅) |
| 12 | 10, 11 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
| 13 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
| 14 | fvprc 6850 | . . . . . . . 8 ⊢ (¬ 𝐹 ∈ V → (toInc‘𝐹) = ∅) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (toInc‘𝐹) = ∅) |
| 16 | 1, 15 | eqtrid 2776 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝐼 = ∅) |
| 17 | 16 | fveq2d 6862 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (lub‘𝐼) = (lub‘∅)) |
| 18 | 13, 17 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘∅)) |
| 19 | 18 | fveq1d 6860 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ((lub‘∅)‘∅)) |
| 20 | rex0 4323 | . . . . . 6 ⊢ ¬ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) | |
| 21 | 20 | intnan 486 | . . . . 5 ⊢ ¬ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) |
| 22 | base0 17184 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 23 | eqid 2729 | . . . . . 6 ⊢ (le‘∅) = (le‘∅) | |
| 24 | eqid 2729 | . . . . . 6 ⊢ (lub‘∅) = (lub‘∅) | |
| 25 | biid 261 | . . . . . 6 ⊢ ((∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) | |
| 26 | 0pos 18282 | . . . . . . 7 ⊢ ∅ ∈ Poset | |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ∅ ∈ Poset) |
| 28 | 22, 23, 24, 25, 27 | lubeldm2 48944 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (∅ ∈ dom (lub‘∅) ↔ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))))) |
| 29 | 21, 28 | mtbiri 327 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ¬ ∅ ∈ dom (lub‘∅)) |
| 30 | ndmfv 6893 | . . . 4 ⊢ (¬ ∅ ∈ dom (lub‘∅) → ((lub‘∅)‘∅) = ∅) | |
| 31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ((lub‘∅)‘∅) = ∅) |
| 32 | 19, 31 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
| 33 | 12, 32 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝑈‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ∩ cint 4910 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 lecple 17227 Posetcpo 18268 lubclub 18270 toInccipo 18486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-tset 17239 df-ple 17240 df-ocomp 17241 df-proset 18255 df-poset 18274 df-lub 18305 df-ipo 18487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |