| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolub00 | Structured version Visualization version GIF version | ||
| Description: The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipoglb0.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub00.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
| ipolub00.f | ⊢ (𝜑 → ∅ ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipolub00 | ⊢ (𝜑 → (𝑈‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoglb0.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 2 | ipolub00.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
| 4 | ipolub00.f | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝐹) | |
| 5 | int0el 4929 | . . . . . . 7 ⊢ (∅ ∈ 𝐹 → ∩ 𝐹 = ∅) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∩ 𝐹 = ∅) |
| 7 | 6, 4 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → ∩ 𝐹 ∈ 𝐹) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 ∈ 𝐹) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐹 ∈ V) | |
| 10 | 1, 3, 8, 9 | ipolub0 48986 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∩ 𝐹) |
| 11 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → ∩ 𝐹 = ∅) |
| 12 | 10, 11 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
| 13 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘𝐼)) |
| 14 | fvprc 6814 | . . . . . . . 8 ⊢ (¬ 𝐹 ∈ V → (toInc‘𝐹) = ∅) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (toInc‘𝐹) = ∅) |
| 16 | 1, 15 | eqtrid 2776 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝐼 = ∅) |
| 17 | 16 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (lub‘𝐼) = (lub‘∅)) |
| 18 | 13, 17 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑈 = (lub‘∅)) |
| 19 | 18 | fveq1d 6824 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ((lub‘∅)‘∅)) |
| 20 | rex0 4311 | . . . . . 6 ⊢ ¬ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) | |
| 21 | 20 | intnan 486 | . . . . 5 ⊢ ¬ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) |
| 22 | base0 17125 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 23 | eqid 2729 | . . . . . 6 ⊢ (le‘∅) = (le‘∅) | |
| 24 | eqid 2729 | . . . . . 6 ⊢ (lub‘∅) = (lub‘∅) | |
| 25 | biid 261 | . . . . . 6 ⊢ ((∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧)) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))) | |
| 26 | 0pos 18227 | . . . . . . 7 ⊢ ∅ ∈ Poset | |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ∅ ∈ Poset) |
| 28 | 22, 23, 24, 25, 27 | lubeldm2 48950 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (∅ ∈ dom (lub‘∅) ↔ (∅ ⊆ ∅ ∧ ∃𝑥 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑥 ∧ ∀𝑧 ∈ ∅ (∀𝑦 ∈ ∅ 𝑦(le‘∅)𝑧 → 𝑥(le‘∅)𝑧))))) |
| 29 | 21, 28 | mtbiri 327 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ¬ ∅ ∈ dom (lub‘∅)) |
| 30 | ndmfv 6855 | . . . 4 ⊢ (¬ ∅ ∈ dom (lub‘∅) → ((lub‘∅)‘∅) = ∅) | |
| 31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → ((lub‘∅)‘∅) = ∅) |
| 32 | 19, 31 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑈‘∅) = ∅) |
| 33 | 12, 32 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝑈‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 ∩ cint 4896 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 lecple 17168 Posetcpo 18213 lubclub 18215 toInccipo 18433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-proset 18200 df-poset 18219 df-lub 18250 df-ipo 18434 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |