MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intunsn Structured version   Visualization version   GIF version

Theorem intunsn 5011
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1 𝐵 ∈ V
Assertion
Ref Expression
intunsn (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 5004 . 2 (𝐴 ∪ {𝐵}) = ( 𝐴 {𝐵})
2 intunsn.1 . . . 4 𝐵 ∈ V
32intsn 5008 . . 3 {𝐵} = 𝐵
43ineq2i 4238 . 2 ( 𝐴 {𝐵}) = ( 𝐴𝐵)
51, 4eqtri 2768 1 (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  {csn 4648   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-un 3981  df-in 3983  df-sn 4649  df-pr 4651  df-int 4971
This theorem is referenced by:  fiint  9394  fiintOLD  9395  incexclem  15884  heibor1lem  37769
  Copyright terms: Public domain W3C validator