| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intunsn | Structured version Visualization version GIF version | ||
| Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| intunsn.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| intunsn | ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intun 4930 | . 2 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ ∩ {𝐵}) | |
| 2 | intunsn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | intsn 4934 | . . 3 ⊢ ∩ {𝐵} = 𝐵 |
| 4 | 3 | ineq2i 4167 | . 2 ⊢ (∩ 𝐴 ∩ ∩ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| 5 | 1, 4 | eqtri 2754 | 1 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 ∩ cin 3901 {csn 4576 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-un 3907 df-in 3909 df-sn 4577 df-pr 4579 df-int 4898 |
| This theorem is referenced by: fiint 9211 incexclem 15740 heibor1lem 37848 |
| Copyright terms: Public domain | W3C validator |