MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intunsn Structured version   Visualization version   GIF version

Theorem intunsn 4920
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1 𝐵 ∈ V
Assertion
Ref Expression
intunsn (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 4911 . 2 (𝐴 ∪ {𝐵}) = ( 𝐴 {𝐵})
2 intunsn.1 . . . 4 𝐵 ∈ V
32intsn 4917 . . 3 {𝐵} = 𝐵
43ineq2i 4143 . 2 ( 𝐴 {𝐵}) = ( 𝐴𝐵)
51, 4eqtri 2766 1 (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  {csn 4561   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-un 3892  df-in 3894  df-sn 4562  df-pr 4564  df-int 4880
This theorem is referenced by:  fiint  9091  incexclem  15548  heibor1lem  35967
  Copyright terms: Public domain W3C validator