| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intunsn | Structured version Visualization version GIF version | ||
| Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| intunsn.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| intunsn | ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intun 4944 | . 2 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ ∩ {𝐵}) | |
| 2 | intunsn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | intsn 4948 | . . 3 ⊢ ∩ {𝐵} = 𝐵 |
| 4 | 3 | ineq2i 4180 | . 2 ⊢ (∩ 𝐴 ∩ ∩ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| 5 | 1, 4 | eqtri 2752 | 1 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 {csn 4589 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-un 3919 df-in 3921 df-sn 4590 df-pr 4592 df-int 4911 |
| This theorem is referenced by: fiint 9277 fiintOLD 9278 incexclem 15802 heibor1lem 37803 |
| Copyright terms: Public domain | W3C validator |