MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniintab Structured version   Visualization version   GIF version

Theorem uniintab 4982
Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of 𝜑(𝑥). (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
uniintab (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})

Proof of Theorem uniintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4721 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 uniintsn 4981 . 2 ( {𝑥𝜑} = {𝑥𝜑} ↔ ∃𝑦{𝑥𝜑} = {𝑦})
31, 2bitr4i 278 1 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wex 1773  ∃!weu 2554  {cab 2701  {csn 4620   cuni 4899   cint 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-sn 4621  df-pr 4623  df-uni 4900  df-int 4941
This theorem is referenced by:  iotaint  6509  reuabaiotaiota  46246
  Copyright terms: Public domain W3C validator