![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniintab | Structured version Visualization version GIF version |
Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of 𝜑(𝑥). (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
uniintab | ⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 4730 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
2 | uniintsn 4990 | . 2 ⊢ (∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1776 ∃!weu 2566 {cab 2712 {csn 4631 ∪ cuni 4912 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 df-int 4952 |
This theorem is referenced by: iotaint 6539 reuabaiotaiota 47037 |
Copyright terms: Public domain | W3C validator |