| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniintab | Structured version Visualization version GIF version | ||
| Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of 𝜑(𝑥). (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| uniintab | ⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 4705 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | uniintsn 4965 | . 2 ⊢ (∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∃wex 1778 ∃!weu 2566 {cab 2712 {csn 4606 ∪ cuni 4887 ∩ cint 4926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4888 df-int 4927 |
| This theorem is referenced by: iotaint 6517 reuabaiotaiota 47057 |
| Copyright terms: Public domain | W3C validator |