| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniintab | Structured version Visualization version GIF version | ||
| Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of 𝜑(𝑥). (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| uniintab | ⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 4689 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | uniintsn 4949 | . 2 ⊢ (∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑} ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∃!weu 2561 {cab 2707 {csn 4589 ∪ cuni 4871 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-int 4911 |
| This theorem is referenced by: iotaint 6487 reuabaiotaiota 47088 |
| Copyright terms: Public domain | W3C validator |