MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniintab Structured version   Visualization version   GIF version

Theorem uniintab 4966
Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of 𝜑(𝑥). (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
uniintab (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})

Proof of Theorem uniintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4705 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 uniintsn 4965 . 2 ( {𝑥𝜑} = {𝑥𝜑} ↔ ∃𝑦{𝑥𝜑} = {𝑦})
31, 2bitr4i 278 1 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wex 1778  ∃!weu 2566  {cab 2712  {csn 4606   cuni 4887   cint 4926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4888  df-int 4927
This theorem is referenced by:  iotaint  6517  reuabaiotaiota  47057
  Copyright terms: Public domain W3C validator