Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1lem Structured version   Visualization version   GIF version

Theorem heibor1lem 37795
Description: Lemma for heibor1 37796. A compact metric space is complete. This proof works by considering the collection cls(𝐹 “ (ℤ𝑛)) for each 𝑛 ∈ ℕ, which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain (𝐹 “ (ℤ𝑚)) for some 𝑚. Thus, by compactness, the intersection contains a point 𝑦, which must then be the convergent point of 𝐹. (Contributed by Jeff Madsen, 17-Jan-2014.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor1.3 (𝜑𝐷 ∈ (Met‘𝑋))
heibor1.4 (𝜑𝐽 ∈ Comp)
heibor1.5 (𝜑𝐹 ∈ (Cau‘𝐷))
heibor1.6 (𝜑𝐹:ℕ⟶𝑋)
Assertion
Ref Expression
heibor1lem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))

Proof of Theorem heibor1lem
Dummy variables 𝑛 𝑦 𝑘 𝑟 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor1.4 . . 3 (𝜑𝐽 ∈ Comp)
2 heibor1.3 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 24359 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
65mopntop 24465 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
74, 6syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
8 imassrn 6090 . . . . . . . . 9 (𝐹𝑢) ⊆ ran 𝐹
9 heibor1.6 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝑋)
109frnd 6744 . . . . . . . . . 10 (𝜑 → ran 𝐹𝑋)
115mopnuni 24466 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
124, 11syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1310, 12sseqtrd 4035 . . . . . . . . 9 (𝜑 → ran 𝐹 𝐽)
148, 13sstrid 4006 . . . . . . . 8 (𝜑 → (𝐹𝑢) ⊆ 𝐽)
15 eqid 2734 . . . . . . . . 9 𝐽 = 𝐽
1615clscld 23070 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹𝑢) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽))
177, 14, 16syl2anc 584 . . . . . . 7 (𝜑 → ((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽))
18 eleq1a 2833 . . . . . . 7 (((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽) → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
2019rexlimdvw 3157 . . . . 5 (𝜑 → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
2120abssdv 4077 . . . 4 (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ (Clsd‘𝐽))
22 fvex 6919 . . . . 5 (Clsd‘𝐽) ∈ V
2322elpw2 5339 . . . 4 ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) ↔ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ (Clsd‘𝐽))
2421, 23sylibr 234 . . 3 (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽))
25 elin 3978 . . . . . . 7 (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin) ↔ (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∧ 𝑟 ∈ Fin))
26 velpw 4609 . . . . . . . . 9 (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ 𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
27 ssabral 4074 . . . . . . . . 9 (𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
2826, 27bitri 275 . . . . . . . 8 (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
2928anbi1i 624 . . . . . . 7 ((𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∧ 𝑟 ∈ Fin) ↔ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin))
3025, 29bitri 275 . . . . . 6 (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin) ↔ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin))
31 raleq 3320 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
3231anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = ∅ → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
33 inteq 4953 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → 𝑚 = ∅)
3433sseq2d 4027 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ ∅))
3534rexbidv 3176 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅))
3632, 35imbi12d 344 . . . . . . . . . . . 12 (𝑚 = ∅ → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)))
37 raleq 3320 . . . . . . . . . . . . . 14 (𝑚 = 𝑦 → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
3837anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
39 inteq 4953 . . . . . . . . . . . . . . 15 (𝑚 = 𝑦 𝑚 = 𝑦)
4039sseq2d 4027 . . . . . . . . . . . . . 14 (𝑚 = 𝑦 → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ 𝑦))
4140rexbidv 3176 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
4238, 41imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑦 → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦)))
43 raleq 3320 . . . . . . . . . . . . . 14 (𝑚 = (𝑦 ∪ {𝑛}) → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
4443anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = (𝑦 ∪ {𝑛}) → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
45 inteq 4953 . . . . . . . . . . . . . . 15 (𝑚 = (𝑦 ∪ {𝑛}) → 𝑚 = (𝑦 ∪ {𝑛}))
4645sseq2d 4027 . . . . . . . . . . . . . 14 (𝑚 = (𝑦 ∪ {𝑛}) → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
4746rexbidv 3176 . . . . . . . . . . . . 13 (𝑚 = (𝑦 ∪ {𝑛}) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
4844, 47imbi12d 344 . . . . . . . . . . . 12 (𝑚 = (𝑦 ∪ {𝑛}) → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
49 raleq 3320 . . . . . . . . . . . . . 14 (𝑚 = 𝑟 → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
5049anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑟 → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
51 inteq 4953 . . . . . . . . . . . . . . 15 (𝑚 = 𝑟 𝑚 = 𝑟)
5251sseq2d 4027 . . . . . . . . . . . . . 14 (𝑚 = 𝑟 → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ 𝑟))
5352rexbidv 3176 . . . . . . . . . . . . 13 (𝑚 = 𝑟 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
5450, 53imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑟 → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟)))
55 uzf 12878 . . . . . . . . . . . . . . . 16 :ℤ⟶𝒫 ℤ
56 ffn 6736 . . . . . . . . . . . . . . . 16 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
5755, 56ax-mp 5 . . . . . . . . . . . . . . 15 Fn ℤ
58 0z 12621 . . . . . . . . . . . . . . 15 0 ∈ ℤ
59 fnfvelrn 7099 . . . . . . . . . . . . . . 15 ((ℤ Fn ℤ ∧ 0 ∈ ℤ) → (ℤ‘0) ∈ ran ℤ)
6057, 58, 59mp2an 692 . . . . . . . . . . . . . 14 (ℤ‘0) ∈ ran ℤ
61 ssv 4019 . . . . . . . . . . . . . . 15 (𝐹 “ (ℤ‘0)) ⊆ V
62 int0 4966 . . . . . . . . . . . . . . 15 ∅ = V
6361, 62sseqtrri 4032 . . . . . . . . . . . . . 14 (𝐹 “ (ℤ‘0)) ⊆
64 imaeq2 6075 . . . . . . . . . . . . . . . 16 (𝑘 = (ℤ‘0) → (𝐹𝑘) = (𝐹 “ (ℤ‘0)))
6564sseq1d 4026 . . . . . . . . . . . . . . 15 (𝑘 = (ℤ‘0) → ((𝐹𝑘) ⊆ ∅ ↔ (𝐹 “ (ℤ‘0)) ⊆ ∅))
6665rspcev 3621 . . . . . . . . . . . . . 14 (((ℤ‘0) ∈ ran ℤ ∧ (𝐹 “ (ℤ‘0)) ⊆ ∅) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)
6760, 63, 66mp2an 692 . . . . . . . . . . . . 13 𝑘 ∈ ran ℤ(𝐹𝑘) ⊆
6867a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)
69 ssun1 4187 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ (𝑦 ∪ {𝑛})
70 ssralv 4063 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
7271anim2i 617 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7372imim1i 63 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
74 ssun2 4188 . . . . . . . . . . . . . . . . . 18 {𝑛} ⊆ (𝑦 ∪ {𝑛})
75 ssralv 4063 . . . . . . . . . . . . . . . . . 18 ({𝑛} ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7674, 75ax-mp 5 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
77 vex 3481 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ V
78 eqeq1 2738 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑛 = ((cls‘𝐽)‘(𝐹𝑢))))
7978rexbidv 3176 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢))))
8077, 79ralsn 4685 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)))
8176, 80sylib 218 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)))
82 uzin2 15379 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ) → (𝑢𝑘) ∈ ran ℤ)
838, 10sstrid 4006 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐹𝑢) ⊆ 𝑋)
8483, 12sseqtrd 4035 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐹𝑢) ⊆ 𝐽)
8515sscls 23079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 ∈ Top ∧ (𝐹𝑢) ⊆ 𝐽) → (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢)))
867, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢)))
87 sseq2 4021 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → ((𝐹𝑢) ⊆ 𝑛 ↔ (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢))))
8886, 87syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → (𝐹𝑢) ⊆ 𝑛))
89 inss2 4245 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢𝑘) ⊆ 𝑘
90 inss1 4244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢𝑘) ⊆ 𝑢
91 imass2 6122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑘) ⊆ 𝑘 → (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘))
92 imass2 6122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑘) ⊆ 𝑢 → (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢))
9391, 92anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑢𝑘) ⊆ 𝑘 ∧ (𝑢𝑘) ⊆ 𝑢) → ((𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢)))
94 ssin 4246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢)) ↔ (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢)))
9593, 94sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑢𝑘) ⊆ 𝑘 ∧ (𝑢𝑘) ⊆ 𝑢) → (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢)))
9689, 90, 95mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢))
97 ss2in 4252 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → ((𝐹𝑘) ∩ (𝐹𝑢)) ⊆ ( 𝑦𝑛))
9896, 97sstrid 4006 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢𝑘)) ⊆ ( 𝑦𝑛))
9977intunsn 4991 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∪ {𝑛}) = ( 𝑦𝑛)
10098, 99sseqtrrdi 4046 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}))
101100expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑢) ⊆ 𝑛 → ((𝐹𝑘) ⊆ 𝑦 → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
10288, 101syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → ((𝐹𝑘) ⊆ 𝑦 → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}))))
103102impd 410 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
104 imaeq2 6075 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = (𝑢𝑘) → (𝐹𝑚) = (𝐹 “ (𝑢𝑘)))
105104sseq1d 4026 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = (𝑢𝑘) → ((𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
106105rspcev 3621 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢𝑘) ∈ ran ℤ ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))
107106expcom 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}) → ((𝑢𝑘) ∈ ran ℤ → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛})))
108103, 107syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ((𝑢𝑘) ∈ ran ℤ → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
109108com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑢𝑘) ∈ ran ℤ → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
11082, 109syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ) → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
111110rexlimdvv 3209 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ(𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛})))
112 reeanv 3226 . . . . . . . . . . . . . . . . . 18 (∃𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ(𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) ↔ (∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
113 imaeq2 6075 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
114113sseq1d 4026 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑘 → ((𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ (𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
115114cbvrexvw 3235 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))
116111, 112, 1153imtr3g 295 . . . . . . . . . . . . . . . . 17 (𝜑 → ((∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
117116expd 415 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
11881, 117syl5 34 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
119118imp 406 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
12073, 119sylcom 30 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
121120a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
12236, 42, 48, 54, 68, 121findcard2 9202 . . . . . . . . . . 11 (𝑟 ∈ Fin → ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
123122com12 32 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (𝑟 ∈ Fin → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
124123impr 454 . . . . . . . . 9 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟)
1259ffnd 6737 . . . . . . . . . . 11 (𝜑𝐹 Fn ℕ)
126 inss1 4244 . . . . . . . . . . . . . . 15 (𝑘 ∩ ℕ) ⊆ 𝑘
127 imass2 6122 . . . . . . . . . . . . . . 15 ((𝑘 ∩ ℕ) ⊆ 𝑘 → (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘))
128126, 127ax-mp 5 . . . . . . . . . . . . . 14 (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘)
129 nnuz 12918 . . . . . . . . . . . . . . . . . . . 20 ℕ = (ℤ‘1)
130 1z 12644 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
131 fnfvelrn 7099 . . . . . . . . . . . . . . . . . . . . 21 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
13257, 130, 131mp2an 692 . . . . . . . . . . . . . . . . . . . 20 (ℤ‘1) ∈ ran ℤ
133129, 132eqeltri 2834 . . . . . . . . . . . . . . . . . . 19 ℕ ∈ ran ℤ
134 uzin2 15379 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ran ℤ ∧ ℕ ∈ ran ℤ) → (𝑘 ∩ ℕ) ∈ ran ℤ)
135133, 134mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ran ℤ → (𝑘 ∩ ℕ) ∈ ran ℤ)
136 uzn0 12892 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∩ ℕ) ∈ ran ℤ → (𝑘 ∩ ℕ) ≠ ∅)
137135, 136syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ran ℤ → (𝑘 ∩ ℕ) ≠ ∅)
138 n0 4358 . . . . . . . . . . . . . . . . 17 ((𝑘 ∩ ℕ) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ))
139137, 138sylib 218 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran ℤ → ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ))
140 fnfun 6668 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℕ → Fun 𝐹)
141 inss2 4245 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∩ ℕ) ⊆ ℕ
142 fndm 6671 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℕ → dom 𝐹 = ℕ)
143141, 142sseqtrrid 4048 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℕ → (𝑘 ∩ ℕ) ⊆ dom 𝐹)
144 funfvima2 7250 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (𝑘 ∩ ℕ) ⊆ dom 𝐹) → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ))))
145140, 143, 144syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ))))
146 ne0i 4346 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ)) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅)
147145, 146syl6 35 . . . . . . . . . . . . . . . . 17 (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
148147exlimdv 1930 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℕ → (∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
149139, 148syl5 34 . . . . . . . . . . . . . . 15 (𝐹 Fn ℕ → (𝑘 ∈ ran ℤ → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
150149imp 406 . . . . . . . . . . . . . 14 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅)
151 ssn0 4409 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅) → (𝐹𝑘) ≠ ∅)
152128, 150, 151sylancr 587 . . . . . . . . . . . . 13 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → (𝐹𝑘) ≠ ∅)
153 ssn0 4409 . . . . . . . . . . . . . 14 (((𝐹𝑘) ⊆ 𝑟 ∧ (𝐹𝑘) ≠ ∅) → 𝑟 ≠ ∅)
154153expcom 413 . . . . . . . . . . . . 13 ((𝐹𝑘) ≠ ∅ → ((𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
155152, 154syl 17 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → ((𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
156155rexlimdva 3152 . . . . . . . . . . 11 (𝐹 Fn ℕ → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
157125, 156syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
158157adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
159124, 158mpd 15 . . . . . . . 8 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → 𝑟 ≠ ∅)
160159necomd 2993 . . . . . . 7 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ∅ ≠ 𝑟)
161160neneqd 2942 . . . . . 6 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ¬ ∅ = 𝑟)
16230, 161sylan2b 594 . . . . 5 ((𝜑𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)) → ¬ ∅ = 𝑟)
163162nrexdv 3146 . . . 4 (𝜑 → ¬ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟)
164 0ex 5312 . . . . 5 ∅ ∈ V
165 zex 12619 . . . . . . . 8 ℤ ∈ V
166165pwex 5385 . . . . . . 7 𝒫 ℤ ∈ V
167 frn 6743 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
16855, 167ax-mp 5 . . . . . . 7 ran ℤ ⊆ 𝒫 ℤ
169166, 168ssexi 5327 . . . . . 6 ran ℤ ∈ V
170169abrexex 7985 . . . . 5 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ V
171 elfi 9450 . . . . 5 ((∅ ∈ V ∧ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ V) → (∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟))
172164, 170, 171mp2an 692 . . . 4 (∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟)
173163, 172sylnibr 329 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
174 cmptop 23418 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
175 cmpfi 23431 . . . . . 6 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅)))
176174, 175syl 17 . . . . 5 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅)))
177176ibi 267 . . . 4 (𝐽 ∈ Comp → ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅))
178 fveq2 6906 . . . . . . . 8 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (fi‘𝑚) = (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
179178eleq2d 2824 . . . . . . 7 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (∅ ∈ (fi‘𝑚) ↔ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
180179notbid 318 . . . . . 6 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (¬ ∅ ∈ (fi‘𝑚) ↔ ¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
181 inteq 4953 . . . . . . . 8 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → 𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
182181neeq1d 2997 . . . . . . 7 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ( 𝑚 ≠ ∅ ↔ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ≠ ∅))
183 n0 4358 . . . . . . 7 ( {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ≠ ∅ ↔ ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
184182, 183bitrdi 287 . . . . . 6 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ( 𝑚 ≠ ∅ ↔ ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
185180, 184imbi12d 344 . . . . 5 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ((¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
186185rspccv 3618 . . . 4 (∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅) → ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
187177, 186syl 17 . . 3 (𝐽 ∈ Comp → ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
1881, 24, 173, 187syl3c 66 . 2 (𝜑 → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
189 lmrel 23253 . . 3 Rel (⇝𝑡𝐽)
190 r19.23v 3180 . . . . . 6 (∀𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
191190albii 1815 . . . . 5 (∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑘(∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
192 fvex 6919 . . . . . . . 8 ((cls‘𝐽)‘(𝐹𝑢)) ∈ V
193 eleq2 2827 . . . . . . . 8 (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → (𝑦𝑘𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))))
194192, 193ceqsalv 3518 . . . . . . 7 (∀𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
195194ralbii 3090 . . . . . 6 (∀𝑢 ∈ ran ℤ𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
196 ralcom4 3283 . . . . . 6 (∀𝑢 ∈ ran ℤ𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
197195, 196bitr3i 277 . . . . 5 (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
198 vex 3481 . . . . . 6 𝑦 ∈ V
199198elintab 4962 . . . . 5 (𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘(∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
200191, 197, 1993bitr4i 303 . . . 4 (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
201 eqid 2734 . . . . . . . . . . 11 ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ))
202 imaeq2 6075 . . . . . . . . . . . . 13 (𝑢 = ℕ → (𝐹𝑢) = (𝐹 “ ℕ))
203202fveq2d 6910 . . . . . . . . . . . 12 (𝑢 = ℕ → ((cls‘𝐽)‘(𝐹𝑢)) = ((cls‘𝐽)‘(𝐹 “ ℕ)))
204203rspceeqv 3644 . . . . . . . . . . 11 ((ℕ ∈ ran ℤ ∧ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ))) → ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢)))
205133, 201, 204mp2an 692 . . . . . . . . . 10 𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))
206 fvex 6919 . . . . . . . . . . 11 ((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ V
207 eqeq1 2738 . . . . . . . . . . . 12 (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))))
208207rexbidv 3176 . . . . . . . . . . 11 (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))))
209206, 208elab 3680 . . . . . . . . . 10 (((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢)))
210205, 209mpbir 231 . . . . . . . . 9 ((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}
211 intss1 4967 . . . . . . . . 9 (((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ)))
212210, 211ax-mp 5 . . . . . . . 8 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ))
213 imassrn 6090 . . . . . . . . . . 11 (𝐹 “ ℕ) ⊆ ran 𝐹
214213, 13sstrid 4006 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℕ) ⊆ 𝐽)
21515clsss3 23082 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹 “ ℕ) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝐽)
2167, 214, 215syl2anc 584 . . . . . . . . 9 (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝐽)
217216, 12sseqtrrd 4036 . . . . . . . 8 (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝑋)
218212, 217sstrid 4006 . . . . . . 7 (𝜑 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ 𝑋)
219218sselda 3994 . . . . . 6 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝑦𝑋)
220200, 219sylan2b 594 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → 𝑦𝑋)
221 heibor1.5 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Cau‘𝐷))
222 1zzd 12645 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
223129, 4, 222iscau3 25325 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦))))
224221, 223mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)))
225224simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦))
226 simp3 1137 . . . . . . . . . . . . 13 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
227226ralimi 3080 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
228227reximi 3081 . . . . . . . . . . 11 (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
229228ralimi 3080 . . . . . . . . . 10 (∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
230225, 229syl 17 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
231230adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
232 rphalfcl 13059 . . . . . . . 8 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
233 breq2 5151 . . . . . . . . . . 11 (𝑦 = (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
2342332ralbidv 3218 . . . . . . . . . 10 (𝑦 = (𝑟 / 2) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
235234rexbidv 3176 . . . . . . . . 9 (𝑦 = (𝑟 / 2) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
236235rspccva 3620 . . . . . . . 8 ((∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2))
237231, 232, 236syl2an 596 . . . . . . 7 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2))
2389ffund 6740 . . . . . . . . . . . 12 (𝜑 → Fun 𝐹)
239238ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → Fun 𝐹)
2407ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝐽 ∈ Top)
241 imassrn 6090 . . . . . . . . . . . . . 14 (𝐹 “ (ℤ𝑚)) ⊆ ran 𝐹
242241, 13sstrid 4006 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ (ℤ𝑚)) ⊆ 𝐽)
243242ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝐹 “ (ℤ𝑚)) ⊆ 𝐽)
244 nnz 12631 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
245 fnfvelrn 7099 . . . . . . . . . . . . . . 15 ((ℤ Fn ℤ ∧ 𝑚 ∈ ℤ) → (ℤ𝑚) ∈ ran ℤ)
24657, 244, 245sylancr 587 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (ℤ𝑚) ∈ ran ℤ)
247246ad2antll 729 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (ℤ𝑚) ∈ ran ℤ)
248 simplr 769 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
249 imaeq2 6075 . . . . . . . . . . . . . . . 16 (𝑢 = (ℤ𝑚) → (𝐹𝑢) = (𝐹 “ (ℤ𝑚)))
250249fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑢 = (ℤ𝑚) → ((cls‘𝐽)‘(𝐹𝑢)) = ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚))))
251250eleq2d 2824 . . . . . . . . . . . . . 14 (𝑢 = (ℤ𝑚) → (𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))))
252251rspcv 3617 . . . . . . . . . . . . 13 ((ℤ𝑚) ∈ ran ℤ → (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))))
253247, 248, 252sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚))))
2544ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝐷 ∈ (∞Met‘𝑋))
255220adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦𝑋)
256232ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑟 / 2) ∈ ℝ+)
257256rpxrd 13075 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑟 / 2) ∈ ℝ*)
2585blopn 24528 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
259254, 255, 257, 258syl3anc 1370 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
260 blcntr 24438 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
261254, 255, 256, 260syl3anc 1370 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
26215clsndisj 23098 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ (𝐹 “ (ℤ𝑚)) ⊆ 𝐽𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))) ∧ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅)
263240, 243, 253, 259, 261, 262syl32anc 1377 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅)
264 n0 4358 . . . . . . . . . . . 12 (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))))
265 inss2 4245 . . . . . . . . . . . . . . . . 17 ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ⊆ (𝐹 “ (ℤ𝑚))
266265sseli 3990 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → 𝑛 ∈ (𝐹 “ (ℤ𝑚)))
267 fvelima 6973 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑛 ∈ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛)
268266, 267sylan2 593 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛)
269 inss1 4244 . . . . . . . . . . . . . . . . . . 19 ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ⊆ (𝑦(ball‘𝐷)(𝑟 / 2))
270269sseli 3990 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
271270adantl 481 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
272 eleq1a 2833 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘) = 𝑛 → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
273271, 272syl 17 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ((𝐹𝑘) = 𝑛 → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
274273reximdv 3167 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → (∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛 → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
275268, 274mpd 15 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
276275ex 412 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
277276exlimdv 1930 . . . . . . . . . . . 12 (Fun 𝐹 → (∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
278264, 277biimtrid 242 . . . . . . . . . . 11 (Fun 𝐹 → (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅ → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
279239, 263, 278sylc 65 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
280 r19.29 3111 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
281 uznnssnn 12934 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (ℤ𝑚) ⊆ ℕ)
282281ad2antll 729 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (ℤ𝑚) ⊆ ℕ)
283 simprlr 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
2844ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐷 ∈ (∞Met‘𝑋))
285 simplrl 777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ+)
286285, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ+)
287286rpxrd 13075 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ*)
288 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑦𝑋)
2899ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐹:ℕ⟶𝑋)
290 eluznn 12957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
291290ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑟 ∈ ℝ+𝑚 ∈ ℕ) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → 𝑘 ∈ ℕ)
292291ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑘 ∈ ℕ)
293289, 292ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
294 elbl3 24417 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑦𝑋 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)))
295284, 287, 288, 293, 294syl22anc 839 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)))
296283, 295mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2))
2972ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
298 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑛 ∈ (ℤ𝑘))
299 eluznn 12957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑘)) → 𝑛 ∈ ℕ)
300292, 298, 299syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑛 ∈ ℕ)
301289, 300ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑛) ∈ 𝑋)
302 metcl 24357 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ)
303297, 293, 301, 302syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ)
304 metcl 24357 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑦𝑋) → ((𝐹𝑘)𝐷𝑦) ∈ ℝ)
305297, 293, 288, 304syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷𝑦) ∈ ℝ)
306286rpred 13074 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ)
307 lt2add 11745 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ ∧ ((𝐹𝑘)𝐷𝑦) ∈ ℝ) ∧ ((𝑟 / 2) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
308303, 305, 306, 306, 307syl22anc 839 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
309296, 308mpan2d 694 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
310285rpcnd 13076 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℂ)
3113102halvesd 12509 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝑟 / 2) + (𝑟 / 2)) = 𝑟)
312311breq2d 5159 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟))
313309, 312sylibd 239 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟))
314 mettri2 24366 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋𝑦𝑋)) → ((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)))
315297, 293, 301, 288, 314syl13anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)))
316 metcl 24357 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑛) ∈ 𝑋𝑦𝑋) → ((𝐹𝑛)𝐷𝑦) ∈ ℝ)
317297, 301, 288, 316syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑛)𝐷𝑦) ∈ ℝ)
318303, 305readdcld 11287 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∈ ℝ)
319285rpred 13074 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
320 lelttr 11348 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹𝑛)𝐷𝑦) ∈ ℝ ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
321317, 318, 319, 320syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
322315, 321mpand 695 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟 → ((𝐹𝑛)𝐷𝑦) < 𝑟))
323313, 322syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
324323anassrs 467 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) ∧ 𝑛 ∈ (ℤ𝑘)) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
325324ralimdva 3164 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
326325expr 456 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
327326com23 86 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
328327impd 410 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → ((∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
329328reximdva 3165 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
330 ssrexv 4064 . . . . . . . . . . . . 13 ((ℤ𝑚) ⊆ ℕ → (∃𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟 → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
331282, 329, 330sylsyld 61 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
332220, 331syldanl 602 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
333280, 332syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ((∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
334279, 333mpan2d 694 . . . . . . . . 9 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
335334anassrs 467 . . . . . . . 8 ((((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
336335rexlimdva 3152 . . . . . . 7 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
337237, 336mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)
338337ralrimiva 3143 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)
339 eqidd 2735 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
3405, 4, 129, 222, 339, 9lmmbrf 25309 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝑦𝑋 ∧ ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
341340adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝑦𝑋 ∧ ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
342220, 338, 341mpbir2and 713 . . . 4 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → 𝐹(⇝𝑡𝐽)𝑦)
343200, 342sylan2br 595 . . 3 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝐹(⇝𝑡𝐽)𝑦)
344 releldm 5957 . . 3 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑦) → 𝐹 ∈ dom (⇝𝑡𝐽))
345189, 343, 344sylancr 587 . 2 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝐹 ∈ dom (⇝𝑡𝐽))
346188, 345exlimddv 1932 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1534   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cun 3960  cin 3961  wss 3962  c0 4338  𝒫 cpw 4604  {csn 4630   cuni 4911   cint 4950   class class class wbr 5147  dom cdm 5688  ran crn 5689  cima 5691  Rel wrel 5693  Fun wfun 6556   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  pm cpm 8865  Fincfn 8983  ficfi 9447  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  *cxr 11291   < clt 11292  cle 11293   / cdiv 11917  cn 12263  2c2 12318  cz 12610  cuz 12875  +crp 13031  ∞Metcxmet 21366  Metcmet 21367  ballcbl 21368  MetOpencmopn 21371  Topctop 22914  Clsdccld 23039  clsccl 23041  𝑡clm 23249  Compccmp 23409  Cauccau 25300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-lm 23252  df-cmp 23410  df-cau 25303
This theorem is referenced by:  heibor1  37796
  Copyright terms: Public domain W3C validator