Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1lem Structured version   Visualization version   GIF version

Theorem heibor1lem 37857
Description: Lemma for heibor1 37858. A compact metric space is complete. This proof works by considering the collection cls(𝐹 “ (ℤ𝑛)) for each 𝑛 ∈ ℕ, which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain (𝐹 “ (ℤ𝑚)) for some 𝑚. Thus, by compactness, the intersection contains a point 𝑦, which must then be the convergent point of 𝐹. (Contributed by Jeff Madsen, 17-Jan-2014.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor1.3 (𝜑𝐷 ∈ (Met‘𝑋))
heibor1.4 (𝜑𝐽 ∈ Comp)
heibor1.5 (𝜑𝐹 ∈ (Cau‘𝐷))
heibor1.6 (𝜑𝐹:ℕ⟶𝑋)
Assertion
Ref Expression
heibor1lem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))

Proof of Theorem heibor1lem
Dummy variables 𝑛 𝑦 𝑘 𝑟 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor1.4 . . 3 (𝜑𝐽 ∈ Comp)
2 heibor1.3 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 24249 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
65mopntop 24355 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
74, 6syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
8 imassrn 6019 . . . . . . . . 9 (𝐹𝑢) ⊆ ran 𝐹
9 heibor1.6 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝑋)
109frnd 6659 . . . . . . . . . 10 (𝜑 → ran 𝐹𝑋)
115mopnuni 24356 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
124, 11syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1310, 12sseqtrd 3966 . . . . . . . . 9 (𝜑 → ran 𝐹 𝐽)
148, 13sstrid 3941 . . . . . . . 8 (𝜑 → (𝐹𝑢) ⊆ 𝐽)
15 eqid 2731 . . . . . . . . 9 𝐽 = 𝐽
1615clscld 22962 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹𝑢) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽))
177, 14, 16syl2anc 584 . . . . . . 7 (𝜑 → ((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽))
18 eleq1a 2826 . . . . . . 7 (((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽) → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
2019rexlimdvw 3138 . . . . 5 (𝜑 → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
2120abssdv 4014 . . . 4 (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ (Clsd‘𝐽))
22 fvex 6835 . . . . 5 (Clsd‘𝐽) ∈ V
2322elpw2 5270 . . . 4 ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) ↔ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ (Clsd‘𝐽))
2421, 23sylibr 234 . . 3 (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽))
25 elin 3913 . . . . . . 7 (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin) ↔ (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∧ 𝑟 ∈ Fin))
26 velpw 4552 . . . . . . . . 9 (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ 𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
27 ssabral 4011 . . . . . . . . 9 (𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
2826, 27bitri 275 . . . . . . . 8 (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
2928anbi1i 624 . . . . . . 7 ((𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∧ 𝑟 ∈ Fin) ↔ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin))
3025, 29bitri 275 . . . . . 6 (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin) ↔ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin))
31 raleq 3289 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
3231anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = ∅ → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
33 inteq 4898 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → 𝑚 = ∅)
3433sseq2d 3962 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ ∅))
3534rexbidv 3156 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅))
3632, 35imbi12d 344 . . . . . . . . . . . 12 (𝑚 = ∅ → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)))
37 raleq 3289 . . . . . . . . . . . . . 14 (𝑚 = 𝑦 → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
3837anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
39 inteq 4898 . . . . . . . . . . . . . . 15 (𝑚 = 𝑦 𝑚 = 𝑦)
4039sseq2d 3962 . . . . . . . . . . . . . 14 (𝑚 = 𝑦 → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ 𝑦))
4140rexbidv 3156 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
4238, 41imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑦 → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦)))
43 raleq 3289 . . . . . . . . . . . . . 14 (𝑚 = (𝑦 ∪ {𝑛}) → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
4443anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = (𝑦 ∪ {𝑛}) → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
45 inteq 4898 . . . . . . . . . . . . . . 15 (𝑚 = (𝑦 ∪ {𝑛}) → 𝑚 = (𝑦 ∪ {𝑛}))
4645sseq2d 3962 . . . . . . . . . . . . . 14 (𝑚 = (𝑦 ∪ {𝑛}) → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
4746rexbidv 3156 . . . . . . . . . . . . 13 (𝑚 = (𝑦 ∪ {𝑛}) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
4844, 47imbi12d 344 . . . . . . . . . . . 12 (𝑚 = (𝑦 ∪ {𝑛}) → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
49 raleq 3289 . . . . . . . . . . . . . 14 (𝑚 = 𝑟 → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
5049anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑟 → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
51 inteq 4898 . . . . . . . . . . . . . . 15 (𝑚 = 𝑟 𝑚 = 𝑟)
5251sseq2d 3962 . . . . . . . . . . . . . 14 (𝑚 = 𝑟 → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ 𝑟))
5352rexbidv 3156 . . . . . . . . . . . . 13 (𝑚 = 𝑟 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
5450, 53imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑟 → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟)))
55 uzf 12735 . . . . . . . . . . . . . . . 16 :ℤ⟶𝒫 ℤ
56 ffn 6651 . . . . . . . . . . . . . . . 16 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
5755, 56ax-mp 5 . . . . . . . . . . . . . . 15 Fn ℤ
58 0z 12479 . . . . . . . . . . . . . . 15 0 ∈ ℤ
59 fnfvelrn 7013 . . . . . . . . . . . . . . 15 ((ℤ Fn ℤ ∧ 0 ∈ ℤ) → (ℤ‘0) ∈ ran ℤ)
6057, 58, 59mp2an 692 . . . . . . . . . . . . . 14 (ℤ‘0) ∈ ran ℤ
61 ssv 3954 . . . . . . . . . . . . . . 15 (𝐹 “ (ℤ‘0)) ⊆ V
62 int0 4910 . . . . . . . . . . . . . . 15 ∅ = V
6361, 62sseqtrri 3979 . . . . . . . . . . . . . 14 (𝐹 “ (ℤ‘0)) ⊆
64 imaeq2 6004 . . . . . . . . . . . . . . . 16 (𝑘 = (ℤ‘0) → (𝐹𝑘) = (𝐹 “ (ℤ‘0)))
6564sseq1d 3961 . . . . . . . . . . . . . . 15 (𝑘 = (ℤ‘0) → ((𝐹𝑘) ⊆ ∅ ↔ (𝐹 “ (ℤ‘0)) ⊆ ∅))
6665rspcev 3572 . . . . . . . . . . . . . 14 (((ℤ‘0) ∈ ran ℤ ∧ (𝐹 “ (ℤ‘0)) ⊆ ∅) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)
6760, 63, 66mp2an 692 . . . . . . . . . . . . 13 𝑘 ∈ ran ℤ(𝐹𝑘) ⊆
6867a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)
69 ssun1 4125 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ (𝑦 ∪ {𝑛})
70 ssralv 3998 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
7271anim2i 617 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7372imim1i 63 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
74 ssun2 4126 . . . . . . . . . . . . . . . . . 18 {𝑛} ⊆ (𝑦 ∪ {𝑛})
75 ssralv 3998 . . . . . . . . . . . . . . . . . 18 ({𝑛} ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7674, 75ax-mp 5 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
77 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ V
78 eqeq1 2735 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑛 = ((cls‘𝐽)‘(𝐹𝑢))))
7978rexbidv 3156 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢))))
8077, 79ralsn 4631 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)))
8176, 80sylib 218 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)))
82 uzin2 15252 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ) → (𝑢𝑘) ∈ ran ℤ)
838, 10sstrid 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐹𝑢) ⊆ 𝑋)
8483, 12sseqtrd 3966 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐹𝑢) ⊆ 𝐽)
8515sscls 22971 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 ∈ Top ∧ (𝐹𝑢) ⊆ 𝐽) → (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢)))
867, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢)))
87 sseq2 3956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → ((𝐹𝑢) ⊆ 𝑛 ↔ (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢))))
8886, 87syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → (𝐹𝑢) ⊆ 𝑛))
89 inss2 4185 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢𝑘) ⊆ 𝑘
90 inss1 4184 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢𝑘) ⊆ 𝑢
91 imass2 6050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑘) ⊆ 𝑘 → (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘))
92 imass2 6050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑘) ⊆ 𝑢 → (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢))
9391, 92anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑢𝑘) ⊆ 𝑘 ∧ (𝑢𝑘) ⊆ 𝑢) → ((𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢)))
94 ssin 4186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢)) ↔ (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢)))
9593, 94sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑢𝑘) ⊆ 𝑘 ∧ (𝑢𝑘) ⊆ 𝑢) → (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢)))
9689, 90, 95mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢))
97 ss2in 4192 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → ((𝐹𝑘) ∩ (𝐹𝑢)) ⊆ ( 𝑦𝑛))
9896, 97sstrid 3941 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢𝑘)) ⊆ ( 𝑦𝑛))
9977intunsn 4935 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∪ {𝑛}) = ( 𝑦𝑛)
10098, 99sseqtrrdi 3971 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}))
101100expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑢) ⊆ 𝑛 → ((𝐹𝑘) ⊆ 𝑦 → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
10288, 101syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → ((𝐹𝑘) ⊆ 𝑦 → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}))))
103102impd 410 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
104 imaeq2 6004 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = (𝑢𝑘) → (𝐹𝑚) = (𝐹 “ (𝑢𝑘)))
105104sseq1d 3961 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = (𝑢𝑘) → ((𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
106105rspcev 3572 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢𝑘) ∈ ran ℤ ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))
107106expcom 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}) → ((𝑢𝑘) ∈ ran ℤ → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛})))
108103, 107syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ((𝑢𝑘) ∈ ran ℤ → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
109108com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑢𝑘) ∈ ran ℤ → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
11082, 109syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ) → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
111110rexlimdvv 3188 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ(𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛})))
112 reeanv 3204 . . . . . . . . . . . . . . . . . 18 (∃𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ(𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) ↔ (∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
113 imaeq2 6004 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
114113sseq1d 3961 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑘 → ((𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ (𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
115114cbvrexvw 3211 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))
116111, 112, 1153imtr3g 295 . . . . . . . . . . . . . . . . 17 (𝜑 → ((∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
117116expd 415 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
11881, 117syl5 34 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
119118imp 406 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
12073, 119sylcom 30 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
121120a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
12236, 42, 48, 54, 68, 121findcard2 9074 . . . . . . . . . . 11 (𝑟 ∈ Fin → ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
123122com12 32 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (𝑟 ∈ Fin → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
124123impr 454 . . . . . . . . 9 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟)
1259ffnd 6652 . . . . . . . . . . 11 (𝜑𝐹 Fn ℕ)
126 inss1 4184 . . . . . . . . . . . . . . 15 (𝑘 ∩ ℕ) ⊆ 𝑘
127 imass2 6050 . . . . . . . . . . . . . . 15 ((𝑘 ∩ ℕ) ⊆ 𝑘 → (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘))
128126, 127ax-mp 5 . . . . . . . . . . . . . 14 (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘)
129 nnuz 12775 . . . . . . . . . . . . . . . . . . . 20 ℕ = (ℤ‘1)
130 1z 12502 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
131 fnfvelrn 7013 . . . . . . . . . . . . . . . . . . . . 21 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
13257, 130, 131mp2an 692 . . . . . . . . . . . . . . . . . . . 20 (ℤ‘1) ∈ ran ℤ
133129, 132eqeltri 2827 . . . . . . . . . . . . . . . . . . 19 ℕ ∈ ran ℤ
134 uzin2 15252 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ran ℤ ∧ ℕ ∈ ran ℤ) → (𝑘 ∩ ℕ) ∈ ran ℤ)
135133, 134mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ran ℤ → (𝑘 ∩ ℕ) ∈ ran ℤ)
136 uzn0 12749 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∩ ℕ) ∈ ran ℤ → (𝑘 ∩ ℕ) ≠ ∅)
137135, 136syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ran ℤ → (𝑘 ∩ ℕ) ≠ ∅)
138 n0 4300 . . . . . . . . . . . . . . . . 17 ((𝑘 ∩ ℕ) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ))
139137, 138sylib 218 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran ℤ → ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ))
140 fnfun 6581 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℕ → Fun 𝐹)
141 inss2 4185 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∩ ℕ) ⊆ ℕ
142 fndm 6584 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℕ → dom 𝐹 = ℕ)
143141, 142sseqtrrid 3973 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℕ → (𝑘 ∩ ℕ) ⊆ dom 𝐹)
144 funfvima2 7165 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (𝑘 ∩ ℕ) ⊆ dom 𝐹) → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ))))
145140, 143, 144syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ))))
146 ne0i 4288 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ)) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅)
147145, 146syl6 35 . . . . . . . . . . . . . . . . 17 (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
148147exlimdv 1934 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℕ → (∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
149139, 148syl5 34 . . . . . . . . . . . . . . 15 (𝐹 Fn ℕ → (𝑘 ∈ ran ℤ → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
150149imp 406 . . . . . . . . . . . . . 14 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅)
151 ssn0 4351 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅) → (𝐹𝑘) ≠ ∅)
152128, 150, 151sylancr 587 . . . . . . . . . . . . 13 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → (𝐹𝑘) ≠ ∅)
153 ssn0 4351 . . . . . . . . . . . . . 14 (((𝐹𝑘) ⊆ 𝑟 ∧ (𝐹𝑘) ≠ ∅) → 𝑟 ≠ ∅)
154153expcom 413 . . . . . . . . . . . . 13 ((𝐹𝑘) ≠ ∅ → ((𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
155152, 154syl 17 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → ((𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
156155rexlimdva 3133 . . . . . . . . . . 11 (𝐹 Fn ℕ → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
157125, 156syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
158157adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
159124, 158mpd 15 . . . . . . . 8 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → 𝑟 ≠ ∅)
160159necomd 2983 . . . . . . 7 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ∅ ≠ 𝑟)
161160neneqd 2933 . . . . . 6 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ¬ ∅ = 𝑟)
16230, 161sylan2b 594 . . . . 5 ((𝜑𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)) → ¬ ∅ = 𝑟)
163162nrexdv 3127 . . . 4 (𝜑 → ¬ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟)
164 0ex 5243 . . . . 5 ∅ ∈ V
165 zex 12477 . . . . . . . 8 ℤ ∈ V
166165pwex 5316 . . . . . . 7 𝒫 ℤ ∈ V
167 frn 6658 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
16855, 167ax-mp 5 . . . . . . 7 ran ℤ ⊆ 𝒫 ℤ
169166, 168ssexi 5258 . . . . . 6 ran ℤ ∈ V
170169abrexex 7894 . . . . 5 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ V
171 elfi 9297 . . . . 5 ((∅ ∈ V ∧ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ V) → (∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟))
172164, 170, 171mp2an 692 . . . 4 (∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟)
173163, 172sylnibr 329 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
174 cmptop 23310 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
175 cmpfi 23323 . . . . . 6 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅)))
176174, 175syl 17 . . . . 5 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅)))
177176ibi 267 . . . 4 (𝐽 ∈ Comp → ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅))
178 fveq2 6822 . . . . . . . 8 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (fi‘𝑚) = (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
179178eleq2d 2817 . . . . . . 7 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (∅ ∈ (fi‘𝑚) ↔ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
180179notbid 318 . . . . . 6 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (¬ ∅ ∈ (fi‘𝑚) ↔ ¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
181 inteq 4898 . . . . . . . 8 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → 𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
182181neeq1d 2987 . . . . . . 7 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ( 𝑚 ≠ ∅ ↔ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ≠ ∅))
183 n0 4300 . . . . . . 7 ( {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ≠ ∅ ↔ ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
184182, 183bitrdi 287 . . . . . 6 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ( 𝑚 ≠ ∅ ↔ ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
185180, 184imbi12d 344 . . . . 5 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ((¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
186185rspccv 3569 . . . 4 (∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅) → ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
187177, 186syl 17 . . 3 (𝐽 ∈ Comp → ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
1881, 24, 173, 187syl3c 66 . 2 (𝜑 → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
189 lmrel 23145 . . 3 Rel (⇝𝑡𝐽)
190 r19.23v 3159 . . . . . 6 (∀𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
191190albii 1820 . . . . 5 (∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑘(∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
192 fvex 6835 . . . . . . . 8 ((cls‘𝐽)‘(𝐹𝑢)) ∈ V
193 eleq2 2820 . . . . . . . 8 (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → (𝑦𝑘𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))))
194192, 193ceqsalv 3476 . . . . . . 7 (∀𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
195194ralbii 3078 . . . . . 6 (∀𝑢 ∈ ran ℤ𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
196 ralcom4 3258 . . . . . 6 (∀𝑢 ∈ ran ℤ𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
197195, 196bitr3i 277 . . . . 5 (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
198 vex 3440 . . . . . 6 𝑦 ∈ V
199198elintab 4907 . . . . 5 (𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘(∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
200191, 197, 1993bitr4i 303 . . . 4 (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
201 eqid 2731 . . . . . . . . . . 11 ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ))
202 imaeq2 6004 . . . . . . . . . . . . 13 (𝑢 = ℕ → (𝐹𝑢) = (𝐹 “ ℕ))
203202fveq2d 6826 . . . . . . . . . . . 12 (𝑢 = ℕ → ((cls‘𝐽)‘(𝐹𝑢)) = ((cls‘𝐽)‘(𝐹 “ ℕ)))
204203rspceeqv 3595 . . . . . . . . . . 11 ((ℕ ∈ ran ℤ ∧ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ))) → ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢)))
205133, 201, 204mp2an 692 . . . . . . . . . 10 𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))
206 fvex 6835 . . . . . . . . . . 11 ((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ V
207 eqeq1 2735 . . . . . . . . . . . 12 (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))))
208207rexbidv 3156 . . . . . . . . . . 11 (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))))
209206, 208elab 3630 . . . . . . . . . 10 (((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢)))
210205, 209mpbir 231 . . . . . . . . 9 ((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}
211 intss1 4911 . . . . . . . . 9 (((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ)))
212210, 211ax-mp 5 . . . . . . . 8 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ))
213 imassrn 6019 . . . . . . . . . . 11 (𝐹 “ ℕ) ⊆ ran 𝐹
214213, 13sstrid 3941 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℕ) ⊆ 𝐽)
21515clsss3 22974 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹 “ ℕ) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝐽)
2167, 214, 215syl2anc 584 . . . . . . . . 9 (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝐽)
217216, 12sseqtrrd 3967 . . . . . . . 8 (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝑋)
218212, 217sstrid 3941 . . . . . . 7 (𝜑 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ 𝑋)
219218sselda 3929 . . . . . 6 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝑦𝑋)
220200, 219sylan2b 594 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → 𝑦𝑋)
221 heibor1.5 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Cau‘𝐷))
222 1zzd 12503 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
223129, 4, 222iscau3 25205 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦))))
224221, 223mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)))
225224simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦))
226 simp3 1138 . . . . . . . . . . . . 13 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
227226ralimi 3069 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
228227reximi 3070 . . . . . . . . . . 11 (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
229228ralimi 3069 . . . . . . . . . 10 (∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
230225, 229syl 17 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
231230adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
232 rphalfcl 12919 . . . . . . . 8 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
233 breq2 5093 . . . . . . . . . . 11 (𝑦 = (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
2342332ralbidv 3196 . . . . . . . . . 10 (𝑦 = (𝑟 / 2) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
235234rexbidv 3156 . . . . . . . . 9 (𝑦 = (𝑟 / 2) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
236235rspccva 3571 . . . . . . . 8 ((∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2))
237231, 232, 236syl2an 596 . . . . . . 7 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2))
2389ffund 6655 . . . . . . . . . . . 12 (𝜑 → Fun 𝐹)
239238ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → Fun 𝐹)
2407ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝐽 ∈ Top)
241 imassrn 6019 . . . . . . . . . . . . . 14 (𝐹 “ (ℤ𝑚)) ⊆ ran 𝐹
242241, 13sstrid 3941 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ (ℤ𝑚)) ⊆ 𝐽)
243242ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝐹 “ (ℤ𝑚)) ⊆ 𝐽)
244 nnz 12489 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
245 fnfvelrn 7013 . . . . . . . . . . . . . . 15 ((ℤ Fn ℤ ∧ 𝑚 ∈ ℤ) → (ℤ𝑚) ∈ ran ℤ)
24657, 244, 245sylancr 587 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (ℤ𝑚) ∈ ran ℤ)
247246ad2antll 729 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (ℤ𝑚) ∈ ran ℤ)
248 simplr 768 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
249 imaeq2 6004 . . . . . . . . . . . . . . . 16 (𝑢 = (ℤ𝑚) → (𝐹𝑢) = (𝐹 “ (ℤ𝑚)))
250249fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑢 = (ℤ𝑚) → ((cls‘𝐽)‘(𝐹𝑢)) = ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚))))
251250eleq2d 2817 . . . . . . . . . . . . . 14 (𝑢 = (ℤ𝑚) → (𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))))
252251rspcv 3568 . . . . . . . . . . . . 13 ((ℤ𝑚) ∈ ran ℤ → (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))))
253247, 248, 252sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚))))
2544ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝐷 ∈ (∞Met‘𝑋))
255220adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦𝑋)
256232ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑟 / 2) ∈ ℝ+)
257256rpxrd 12935 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑟 / 2) ∈ ℝ*)
2585blopn 24415 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
259254, 255, 257, 258syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
260 blcntr 24328 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
261254, 255, 256, 260syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
26215clsndisj 22990 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ (𝐹 “ (ℤ𝑚)) ⊆ 𝐽𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))) ∧ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅)
263240, 243, 253, 259, 261, 262syl32anc 1380 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅)
264 n0 4300 . . . . . . . . . . . 12 (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))))
265 inss2 4185 . . . . . . . . . . . . . . . . 17 ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ⊆ (𝐹 “ (ℤ𝑚))
266265sseli 3925 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → 𝑛 ∈ (𝐹 “ (ℤ𝑚)))
267 fvelima 6887 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑛 ∈ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛)
268266, 267sylan2 593 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛)
269 inss1 4184 . . . . . . . . . . . . . . . . . . 19 ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ⊆ (𝑦(ball‘𝐷)(𝑟 / 2))
270269sseli 3925 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
271270adantl 481 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
272 eleq1a 2826 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘) = 𝑛 → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
273271, 272syl 17 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ((𝐹𝑘) = 𝑛 → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
274273reximdv 3147 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → (∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛 → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
275268, 274mpd 15 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
276275ex 412 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
277276exlimdv 1934 . . . . . . . . . . . 12 (Fun 𝐹 → (∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
278264, 277biimtrid 242 . . . . . . . . . . 11 (Fun 𝐹 → (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅ → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
279239, 263, 278sylc 65 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
280 r19.29 3095 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
281 uznnssnn 12793 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (ℤ𝑚) ⊆ ℕ)
282281ad2antll 729 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (ℤ𝑚) ⊆ ℕ)
283 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
2844ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐷 ∈ (∞Met‘𝑋))
285 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ+)
286285, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ+)
287286rpxrd 12935 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ*)
288 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑦𝑋)
2899ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐹:ℕ⟶𝑋)
290 eluznn 12816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
291290ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑟 ∈ ℝ+𝑚 ∈ ℕ) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → 𝑘 ∈ ℕ)
292291ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑘 ∈ ℕ)
293289, 292ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
294 elbl3 24307 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑦𝑋 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)))
295284, 287, 288, 293, 294syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)))
296283, 295mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2))
2972ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
298 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑛 ∈ (ℤ𝑘))
299 eluznn 12816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑘)) → 𝑛 ∈ ℕ)
300292, 298, 299syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑛 ∈ ℕ)
301289, 300ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑛) ∈ 𝑋)
302 metcl 24247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ)
303297, 293, 301, 302syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ)
304 metcl 24247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑦𝑋) → ((𝐹𝑘)𝐷𝑦) ∈ ℝ)
305297, 293, 288, 304syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷𝑦) ∈ ℝ)
306286rpred 12934 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ)
307 lt2add 11602 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ ∧ ((𝐹𝑘)𝐷𝑦) ∈ ℝ) ∧ ((𝑟 / 2) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
308303, 305, 306, 306, 307syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
309296, 308mpan2d 694 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
310285rpcnd 12936 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℂ)
3113102halvesd 12367 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝑟 / 2) + (𝑟 / 2)) = 𝑟)
312311breq2d 5101 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟))
313309, 312sylibd 239 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟))
314 mettri2 24256 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋𝑦𝑋)) → ((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)))
315297, 293, 301, 288, 314syl13anc 1374 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)))
316 metcl 24247 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑛) ∈ 𝑋𝑦𝑋) → ((𝐹𝑛)𝐷𝑦) ∈ ℝ)
317297, 301, 288, 316syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑛)𝐷𝑦) ∈ ℝ)
318303, 305readdcld 11141 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∈ ℝ)
319285rpred 12934 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
320 lelttr 11203 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹𝑛)𝐷𝑦) ∈ ℝ ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
321317, 318, 319, 320syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
322315, 321mpand 695 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟 → ((𝐹𝑛)𝐷𝑦) < 𝑟))
323313, 322syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
324323anassrs 467 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) ∧ 𝑛 ∈ (ℤ𝑘)) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
325324ralimdva 3144 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
326325expr 456 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
327326com23 86 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
328327impd 410 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → ((∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
329328reximdva 3145 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
330 ssrexv 3999 . . . . . . . . . . . . 13 ((ℤ𝑚) ⊆ ℕ → (∃𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟 → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
331282, 329, 330sylsyld 61 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
332220, 331syldanl 602 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
333280, 332syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ((∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
334279, 333mpan2d 694 . . . . . . . . 9 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
335334anassrs 467 . . . . . . . 8 ((((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
336335rexlimdva 3133 . . . . . . 7 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
337237, 336mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)
338337ralrimiva 3124 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)
339 eqidd 2732 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
3405, 4, 129, 222, 339, 9lmmbrf 25189 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝑦𝑋 ∧ ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
341340adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝑦𝑋 ∧ ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
342220, 338, 341mpbir2and 713 . . . 4 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → 𝐹(⇝𝑡𝐽)𝑦)
343200, 342sylan2br 595 . . 3 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝐹(⇝𝑡𝐽)𝑦)
344 releldm 5883 . . 3 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑦) → 𝐹 ∈ dom (⇝𝑡𝐽))
345189, 343, 344sylancr 587 . 2 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝐹 ∈ dom (⇝𝑡𝐽))
346188, 345exlimddv 1936 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cun 3895  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   cuni 4856   cint 4895   class class class wbr 5089  dom cdm 5614  ran crn 5615  cima 5617  Rel wrel 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  pm cpm 8751  Fincfn 8869  ficfi 9294  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147   / cdiv 11774  cn 12125  2c2 12180  cz 12468  cuz 12732  +crp 12890  ∞Metcxmet 21276  Metcmet 21277  ballcbl 21278  MetOpencmopn 21281  Topctop 22808  Clsdccld 22931  clsccl 22933  𝑡clm 23141  Compccmp 23301  Cauccau 25180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-lm 23144  df-cmp 23302  df-cau 25183
This theorem is referenced by:  heibor1  37858
  Copyright terms: Public domain W3C validator