Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1lem Structured version   Visualization version   GIF version

Theorem heibor1lem 35247
Description: Lemma for heibor1 35248. A compact metric space is complete. This proof works by considering the collection cls(𝐹 “ (ℤ𝑛)) for each 𝑛 ∈ ℕ, which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain (𝐹 “ (ℤ𝑚)) for some 𝑚. Thus, by compactness, the intersection contains a point 𝑦, which must then be the convergent point of 𝐹. (Contributed by Jeff Madsen, 17-Jan-2014.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor1.3 (𝜑𝐷 ∈ (Met‘𝑋))
heibor1.4 (𝜑𝐽 ∈ Comp)
heibor1.5 (𝜑𝐹 ∈ (Cau‘𝐷))
heibor1.6 (𝜑𝐹:ℕ⟶𝑋)
Assertion
Ref Expression
heibor1lem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))

Proof of Theorem heibor1lem
Dummy variables 𝑛 𝑦 𝑘 𝑟 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor1.4 . . 3 (𝜑𝐽 ∈ Comp)
2 heibor1.3 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 22941 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
65mopntop 23047 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
74, 6syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
8 imassrn 5907 . . . . . . . . 9 (𝐹𝑢) ⊆ ran 𝐹
9 heibor1.6 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝑋)
109frnd 6494 . . . . . . . . . 10 (𝜑 → ran 𝐹𝑋)
115mopnuni 23048 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
124, 11syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1310, 12sseqtrd 3955 . . . . . . . . 9 (𝜑 → ran 𝐹 𝐽)
148, 13sstrid 3926 . . . . . . . 8 (𝜑 → (𝐹𝑢) ⊆ 𝐽)
15 eqid 2798 . . . . . . . . 9 𝐽 = 𝐽
1615clscld 21652 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹𝑢) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽))
177, 14, 16syl2anc 587 . . . . . . 7 (𝜑 → ((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽))
18 eleq1a 2885 . . . . . . 7 (((cls‘𝐽)‘(𝐹𝑢)) ∈ (Clsd‘𝐽) → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
2019rexlimdvw 3249 . . . . 5 (𝜑 → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑘 ∈ (Clsd‘𝐽)))
2120abssdv 3996 . . . 4 (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ (Clsd‘𝐽))
22 fvex 6658 . . . . 5 (Clsd‘𝐽) ∈ V
2322elpw2 5212 . . . 4 ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) ↔ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ (Clsd‘𝐽))
2421, 23sylibr 237 . . 3 (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽))
25 elin 3897 . . . . . . 7 (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin) ↔ (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∧ 𝑟 ∈ Fin))
26 velpw 4502 . . . . . . . . 9 (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ 𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
27 ssabral 3990 . . . . . . . . 9 (𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
2826, 27bitri 278 . . . . . . . 8 (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
2928anbi1i 626 . . . . . . 7 ((𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∧ 𝑟 ∈ Fin) ↔ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin))
3025, 29bitri 278 . . . . . 6 (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin) ↔ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin))
31 raleq 3358 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
3231anbi2d 631 . . . . . . . . . . . . 13 (𝑚 = ∅ → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
33 inteq 4841 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → 𝑚 = ∅)
3433sseq2d 3947 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ ∅))
3534rexbidv 3256 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅))
3632, 35imbi12d 348 . . . . . . . . . . . 12 (𝑚 = ∅ → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)))
37 raleq 3358 . . . . . . . . . . . . . 14 (𝑚 = 𝑦 → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
3837anbi2d 631 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
39 inteq 4841 . . . . . . . . . . . . . . 15 (𝑚 = 𝑦 𝑚 = 𝑦)
4039sseq2d 3947 . . . . . . . . . . . . . 14 (𝑚 = 𝑦 → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ 𝑦))
4140rexbidv 3256 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
4238, 41imbi12d 348 . . . . . . . . . . . 12 (𝑚 = 𝑦 → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦)))
43 raleq 3358 . . . . . . . . . . . . . 14 (𝑚 = (𝑦 ∪ {𝑛}) → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
4443anbi2d 631 . . . . . . . . . . . . 13 (𝑚 = (𝑦 ∪ {𝑛}) → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
45 inteq 4841 . . . . . . . . . . . . . . 15 (𝑚 = (𝑦 ∪ {𝑛}) → 𝑚 = (𝑦 ∪ {𝑛}))
4645sseq2d 3947 . . . . . . . . . . . . . 14 (𝑚 = (𝑦 ∪ {𝑛}) → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
4746rexbidv 3256 . . . . . . . . . . . . 13 (𝑚 = (𝑦 ∪ {𝑛}) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
4844, 47imbi12d 348 . . . . . . . . . . . 12 (𝑚 = (𝑦 ∪ {𝑛}) → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
49 raleq 3358 . . . . . . . . . . . . . 14 (𝑚 = 𝑟 → (∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
5049anbi2d 631 . . . . . . . . . . . . 13 (𝑚 = 𝑟 → ((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) ↔ (𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))))
51 inteq 4841 . . . . . . . . . . . . . . 15 (𝑚 = 𝑟 𝑚 = 𝑟)
5251sseq2d 3947 . . . . . . . . . . . . . 14 (𝑚 = 𝑟 → ((𝐹𝑘) ⊆ 𝑚 ↔ (𝐹𝑘) ⊆ 𝑟))
5352rexbidv 3256 . . . . . . . . . . . . 13 (𝑚 = 𝑟 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚 ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
5450, 53imbi12d 348 . . . . . . . . . . . 12 (𝑚 = 𝑟 → (((𝜑 ∧ ∀𝑘𝑚𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑚) ↔ ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟)))
55 uzf 12234 . . . . . . . . . . . . . . . 16 :ℤ⟶𝒫 ℤ
56 ffn 6487 . . . . . . . . . . . . . . . 16 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
5755, 56ax-mp 5 . . . . . . . . . . . . . . 15 Fn ℤ
58 0z 11980 . . . . . . . . . . . . . . 15 0 ∈ ℤ
59 fnfvelrn 6825 . . . . . . . . . . . . . . 15 ((ℤ Fn ℤ ∧ 0 ∈ ℤ) → (ℤ‘0) ∈ ran ℤ)
6057, 58, 59mp2an 691 . . . . . . . . . . . . . 14 (ℤ‘0) ∈ ran ℤ
61 ssv 3939 . . . . . . . . . . . . . . 15 (𝐹 “ (ℤ‘0)) ⊆ V
62 int0 4852 . . . . . . . . . . . . . . 15 ∅ = V
6361, 62sseqtrri 3952 . . . . . . . . . . . . . 14 (𝐹 “ (ℤ‘0)) ⊆
64 imaeq2 5892 . . . . . . . . . . . . . . . 16 (𝑘 = (ℤ‘0) → (𝐹𝑘) = (𝐹 “ (ℤ‘0)))
6564sseq1d 3946 . . . . . . . . . . . . . . 15 (𝑘 = (ℤ‘0) → ((𝐹𝑘) ⊆ ∅ ↔ (𝐹 “ (ℤ‘0)) ⊆ ∅))
6665rspcev 3571 . . . . . . . . . . . . . 14 (((ℤ‘0) ∈ ran ℤ ∧ (𝐹 “ (ℤ‘0)) ⊆ ∅) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)
6760, 63, 66mp2an 691 . . . . . . . . . . . . 13 𝑘 ∈ ran ℤ(𝐹𝑘) ⊆
6867a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ ∅)
69 ssun1 4099 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ (𝑦 ∪ {𝑛})
70 ssralv 3981 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
7271anim2i 619 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7372imim1i 63 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
74 ssun2 4100 . . . . . . . . . . . . . . . . . 18 {𝑛} ⊆ (𝑦 ∪ {𝑛})
75 ssralv 3981 . . . . . . . . . . . . . . . . . 18 ({𝑛} ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))))
7674, 75ax-mp 5 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)))
77 vex 3444 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ V
78 eqeq1 2802 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑛 = ((cls‘𝐽)‘(𝐹𝑢))))
7978rexbidv 3256 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢))))
8077, 79ralsn 4579 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)))
8176, 80sylib 221 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → ∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)))
82 uzin2 14696 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ) → (𝑢𝑘) ∈ ran ℤ)
838, 10sstrid 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐹𝑢) ⊆ 𝑋)
8483, 12sseqtrd 3955 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐹𝑢) ⊆ 𝐽)
8515sscls 21661 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 ∈ Top ∧ (𝐹𝑢) ⊆ 𝐽) → (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢)))
867, 84, 85syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢)))
87 sseq2 3941 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → ((𝐹𝑢) ⊆ 𝑛 ↔ (𝐹𝑢) ⊆ ((cls‘𝐽)‘(𝐹𝑢))))
8886, 87syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → (𝐹𝑢) ⊆ 𝑛))
89 inss2 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢𝑘) ⊆ 𝑘
90 inss1 4155 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢𝑘) ⊆ 𝑢
91 imass2 5932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑘) ⊆ 𝑘 → (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘))
92 imass2 5932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑘) ⊆ 𝑢 → (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢))
9391, 92anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑢𝑘) ⊆ 𝑘 ∧ (𝑢𝑘) ⊆ 𝑢) → ((𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢)))
94 ssin 4157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝐹𝑢)) ↔ (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢)))
9593, 94sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑢𝑘) ⊆ 𝑘 ∧ (𝑢𝑘) ⊆ 𝑢) → (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢)))
9689, 90, 95mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 “ (𝑢𝑘)) ⊆ ((𝐹𝑘) ∩ (𝐹𝑢))
97 ss2in 4163 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → ((𝐹𝑘) ∩ (𝐹𝑢)) ⊆ ( 𝑦𝑛))
9896, 97sstrid 3926 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢𝑘)) ⊆ ( 𝑦𝑛))
9977intunsn 4877 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∪ {𝑛}) = ( 𝑦𝑛)
10098, 99sseqtrrdi 3966 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹𝑘) ⊆ 𝑦 ∧ (𝐹𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}))
101100expcom 417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑢) ⊆ 𝑛 → ((𝐹𝑘) ⊆ 𝑦 → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
10288, 101syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → ((𝐹𝑘) ⊆ 𝑦 → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}))))
103102impd 414 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
104 imaeq2 5892 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = (𝑢𝑘) → (𝐹𝑚) = (𝐹 “ (𝑢𝑘)))
105104sseq1d 3946 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = (𝑢𝑘) → ((𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})))
106105rspcev 3571 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢𝑘) ∈ ran ℤ ∧ (𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛})) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))
107106expcom 417 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 “ (𝑢𝑘)) ⊆ (𝑦 ∪ {𝑛}) → ((𝑢𝑘) ∈ ran ℤ → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛})))
108103, 107syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ((𝑢𝑘) ∈ ran ℤ → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
109108com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑢𝑘) ∈ ran ℤ → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
11082, 109syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ) → ((𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}))))
111110rexlimdvv 3252 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ(𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) → ∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛})))
112 reeanv 3320 . . . . . . . . . . . . . . . . . 18 (∃𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ(𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ (𝐹𝑘) ⊆ 𝑦) ↔ (∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦))
113 imaeq2 5892 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
114113sseq1d 3946 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑘 → ((𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ (𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
115114cbvrexvw 3397 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ran ℤ(𝐹𝑚) ⊆ (𝑦 ∪ {𝑛}) ↔ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))
116111, 112, 1153imtr3g 298 . . . . . . . . . . . . . . . . 17 (𝜑 → ((∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
117116expd 419 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑢 ∈ ran ℤ𝑛 = ((cls‘𝐽)‘(𝐹𝑢)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
11881, 117syl5 34 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
119118imp 410 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
12073, 119sylcom 30 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛})))
121120a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (((𝜑 ∧ ∀𝑘𝑦𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ (𝑦 ∪ {𝑛}))))
12236, 42, 48, 54, 68, 121findcard2 8742 . . . . . . . . . . 11 (𝑟 ∈ Fin → ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
123122com12 32 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))) → (𝑟 ∈ Fin → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟))
124123impr 458 . . . . . . . . 9 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟)
1259ffnd 6488 . . . . . . . . . . 11 (𝜑𝐹 Fn ℕ)
126 inss1 4155 . . . . . . . . . . . . . . 15 (𝑘 ∩ ℕ) ⊆ 𝑘
127 imass2 5932 . . . . . . . . . . . . . . 15 ((𝑘 ∩ ℕ) ⊆ 𝑘 → (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘))
128126, 127ax-mp 5 . . . . . . . . . . . . . 14 (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘)
129 nnuz 12269 . . . . . . . . . . . . . . . . . . . 20 ℕ = (ℤ‘1)
130 1z 12000 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
131 fnfvelrn 6825 . . . . . . . . . . . . . . . . . . . . 21 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
13257, 130, 131mp2an 691 . . . . . . . . . . . . . . . . . . . 20 (ℤ‘1) ∈ ran ℤ
133129, 132eqeltri 2886 . . . . . . . . . . . . . . . . . . 19 ℕ ∈ ran ℤ
134 uzin2 14696 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ran ℤ ∧ ℕ ∈ ran ℤ) → (𝑘 ∩ ℕ) ∈ ran ℤ)
135133, 134mpan2 690 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ran ℤ → (𝑘 ∩ ℕ) ∈ ran ℤ)
136 uzn0 12248 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∩ ℕ) ∈ ran ℤ → (𝑘 ∩ ℕ) ≠ ∅)
137135, 136syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ran ℤ → (𝑘 ∩ ℕ) ≠ ∅)
138 n0 4260 . . . . . . . . . . . . . . . . 17 ((𝑘 ∩ ℕ) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ))
139137, 138sylib 221 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran ℤ → ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ))
140 fnfun 6423 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℕ → Fun 𝐹)
141 inss2 4156 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∩ ℕ) ⊆ ℕ
142 fndm 6425 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℕ → dom 𝐹 = ℕ)
143141, 142sseqtrrid 3968 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℕ → (𝑘 ∩ ℕ) ⊆ dom 𝐹)
144 funfvima2 6971 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (𝑘 ∩ ℕ) ⊆ dom 𝐹) → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ))))
145140, 143, 144syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ))))
146 ne0i 4250 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ)) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅)
147145, 146syl6 35 . . . . . . . . . . . . . . . . 17 (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
148147exlimdv 1934 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℕ → (∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
149139, 148syl5 34 . . . . . . . . . . . . . . 15 (𝐹 Fn ℕ → (𝑘 ∈ ran ℤ → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅))
150149imp 410 . . . . . . . . . . . . . 14 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅)
151 ssn0 4308 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹𝑘) ∧ (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅) → (𝐹𝑘) ≠ ∅)
152128, 150, 151sylancr 590 . . . . . . . . . . . . 13 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → (𝐹𝑘) ≠ ∅)
153 ssn0 4308 . . . . . . . . . . . . . 14 (((𝐹𝑘) ⊆ 𝑟 ∧ (𝐹𝑘) ≠ ∅) → 𝑟 ≠ ∅)
154153expcom 417 . . . . . . . . . . . . 13 ((𝐹𝑘) ≠ ∅ → ((𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
155152, 154syl 17 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ) → ((𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
156155rexlimdva 3243 . . . . . . . . . . 11 (𝐹 Fn ℕ → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
157125, 156syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
158157adantr 484 . . . . . . . . 9 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → (∃𝑘 ∈ ran ℤ(𝐹𝑘) ⊆ 𝑟 𝑟 ≠ ∅))
159124, 158mpd 15 . . . . . . . 8 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → 𝑟 ≠ ∅)
160159necomd 3042 . . . . . . 7 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ∅ ≠ 𝑟)
161160neneqd 2992 . . . . . 6 ((𝜑 ∧ (∀𝑘𝑟𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ∧ 𝑟 ∈ Fin)) → ¬ ∅ = 𝑟)
16230, 161sylan2b 596 . . . . 5 ((𝜑𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)) → ¬ ∅ = 𝑟)
163162nrexdv 3229 . . . 4 (𝜑 → ¬ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟)
164 0ex 5175 . . . . 5 ∅ ∈ V
165 zex 11978 . . . . . . . 8 ℤ ∈ V
166165pwex 5246 . . . . . . 7 𝒫 ℤ ∈ V
167 frn 6493 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
16855, 167ax-mp 5 . . . . . . 7 ran ℤ ⊆ 𝒫 ℤ
169166, 168ssexi 5190 . . . . . 6 ran ℤ ∈ V
170169abrexex 7645 . . . . 5 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ V
171 elfi 8861 . . . . 5 ((∅ ∈ V ∧ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ V) → (∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟))
172164, 170, 171mp2an 691 . . . 4 (∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∩ Fin)∅ = 𝑟)
173163, 172sylnibr 332 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
174 cmptop 22000 . . . . . 6 (𝐽 ∈ Comp → 𝐽 ∈ Top)
175 cmpfi 22013 . . . . . 6 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅)))
176174, 175syl 17 . . . . 5 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅)))
177176ibi 270 . . . 4 (𝐽 ∈ Comp → ∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅))
178 fveq2 6645 . . . . . . . 8 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (fi‘𝑚) = (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
179178eleq2d 2875 . . . . . . 7 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (∅ ∈ (fi‘𝑚) ↔ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
180179notbid 321 . . . . . 6 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → (¬ ∅ ∈ (fi‘𝑚) ↔ ¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
181 inteq 4841 . . . . . . . 8 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → 𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
182181neeq1d 3046 . . . . . . 7 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ( 𝑚 ≠ ∅ ↔ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ≠ ∅))
183 n0 4260 . . . . . . 7 ( {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ≠ ∅ ↔ ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
184182, 183syl6bb 290 . . . . . 6 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ( 𝑚 ≠ ∅ ↔ ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}))
185180, 184imbi12d 348 . . . . 5 (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → ((¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
186185rspccv 3568 . . . 4 (∀𝑚 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → 𝑚 ≠ ∅) → ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
187177, 186syl 17 . . 3 (𝐽 ∈ Comp → ({𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})))
1881, 24, 173, 187syl3c 66 . 2 (𝜑 → ∃𝑦 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
189 lmrel 21835 . . 3 Rel (⇝𝑡𝐽)
190 r19.23v 3238 . . . . . 6 (∀𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
191190albii 1821 . . . . 5 (∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑘(∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
192 fvex 6658 . . . . . . . 8 ((cls‘𝐽)‘(𝐹𝑢)) ∈ V
193 eleq2 2878 . . . . . . . 8 (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → (𝑦𝑘𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))))
194192, 193ceqsalv 3479 . . . . . . 7 (∀𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
195194ralbii 3133 . . . . . 6 (∀𝑢 ∈ ran ℤ𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
196 ralcom4 3198 . . . . . 6 (∀𝑢 ∈ ran ℤ𝑘(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘) ↔ ∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
197195, 196bitr3i 280 . . . . 5 (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∀𝑘𝑢 ∈ ran ℤ(𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
198 vex 3444 . . . . . 6 𝑦 ∈ V
199198elintab 4849 . . . . 5 (𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∀𝑘(∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦𝑘))
200191, 197, 1993bitr4i 306 . . . 4 (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))})
201 eqid 2798 . . . . . . . . . . 11 ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ))
202 imaeq2 5892 . . . . . . . . . . . . 13 (𝑢 = ℕ → (𝐹𝑢) = (𝐹 “ ℕ))
203202fveq2d 6649 . . . . . . . . . . . 12 (𝑢 = ℕ → ((cls‘𝐽)‘(𝐹𝑢)) = ((cls‘𝐽)‘(𝐹 “ ℕ)))
204203rspceeqv 3586 . . . . . . . . . . 11 ((ℕ ∈ ran ℤ ∧ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ))) → ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢)))
205133, 201, 204mp2an 691 . . . . . . . . . 10 𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))
206 fvex 6658 . . . . . . . . . . 11 ((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ V
207 eqeq1 2802 . . . . . . . . . . . 12 (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))))
208207rexbidv 3256 . . . . . . . . . . 11 (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢)) ↔ ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢))))
209206, 208elab 3615 . . . . . . . . . 10 (((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ↔ ∃𝑢 ∈ ran ℤ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹𝑢)))
210205, 209mpbir 234 . . . . . . . . 9 ((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}
211 intss1 4853 . . . . . . . . 9 (((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} → {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ)))
212210, 211ax-mp 5 . . . . . . . 8 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ))
213 imassrn 5907 . . . . . . . . . . 11 (𝐹 “ ℕ) ⊆ ran 𝐹
214213, 13sstrid 3926 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℕ) ⊆ 𝐽)
21515clsss3 21664 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹 “ ℕ) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝐽)
2167, 214, 215syl2anc 587 . . . . . . . . 9 (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝐽)
217216, 12sseqtrrd 3956 . . . . . . . 8 (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝑋)
218212, 217sstrid 3926 . . . . . . 7 (𝜑 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))} ⊆ 𝑋)
219218sselda 3915 . . . . . 6 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝑦𝑋)
220200, 219sylan2b 596 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → 𝑦𝑋)
221 heibor1.5 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Cau‘𝐷))
222 1zzd 12001 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
223129, 4, 222iscau3 23882 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦))))
224221, 223mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)))
225224simprd 499 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦))
226 simp3 1135 . . . . . . . . . . . . 13 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
227226ralimi 3128 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
228227reximi 3206 . . . . . . . . . . 11 (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
229228ralimi 3128 . . . . . . . . . 10 (∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
230225, 229syl 17 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
231230adantr 484 . . . . . . . 8 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → ∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦)
232 rphalfcl 12404 . . . . . . . 8 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
233 breq2 5034 . . . . . . . . . . 11 (𝑦 = (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
2342332ralbidv 3164 . . . . . . . . . 10 (𝑦 = (𝑟 / 2) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
235234rexbidv 3256 . . . . . . . . 9 (𝑦 = (𝑟 / 2) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ↔ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2)))
236235rspccva 3570 . . . . . . . 8 ((∀𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < 𝑦 ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2))
237231, 232, 236syl2an 598 . . . . . . 7 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2))
2389ffund 6491 . . . . . . . . . . . 12 (𝜑 → Fun 𝐹)
239238ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → Fun 𝐹)
2407ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝐽 ∈ Top)
241 imassrn 5907 . . . . . . . . . . . . . 14 (𝐹 “ (ℤ𝑚)) ⊆ ran 𝐹
242241, 13sstrid 3926 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ (ℤ𝑚)) ⊆ 𝐽)
243242ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝐹 “ (ℤ𝑚)) ⊆ 𝐽)
244 nnz 11992 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
245 fnfvelrn 6825 . . . . . . . . . . . . . . 15 ((ℤ Fn ℤ ∧ 𝑚 ∈ ℤ) → (ℤ𝑚) ∈ ran ℤ)
24657, 244, 245sylancr 590 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (ℤ𝑚) ∈ ran ℤ)
247246ad2antll 728 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (ℤ𝑚) ∈ ran ℤ)
248 simplr 768 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)))
249 imaeq2 5892 . . . . . . . . . . . . . . . 16 (𝑢 = (ℤ𝑚) → (𝐹𝑢) = (𝐹 “ (ℤ𝑚)))
250249fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑢 = (ℤ𝑚) → ((cls‘𝐽)‘(𝐹𝑢)) = ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚))))
251250eleq2d 2875 . . . . . . . . . . . . . 14 (𝑢 = (ℤ𝑚) → (𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))))
252251rspcv 3566 . . . . . . . . . . . . 13 ((ℤ𝑚) ∈ ran ℤ → (∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))))
253247, 248, 252sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚))))
2544ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝐷 ∈ (∞Met‘𝑋))
255220adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦𝑋)
256232ad2antrl 727 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑟 / 2) ∈ ℝ+)
257256rpxrd 12420 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑟 / 2) ∈ ℝ*)
2585blopn 23107 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
259254, 255, 257, 258syl3anc 1368 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
260 blcntr 23020 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
261254, 255, 256, 260syl3anc 1368 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
26215clsndisj 21680 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ (𝐹 “ (ℤ𝑚)) ⊆ 𝐽𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ𝑚)))) ∧ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅)
263240, 243, 253, 259, 261, 262syl32anc 1375 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅)
264 n0 4260 . . . . . . . . . . . 12 (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))))
265 inss2 4156 . . . . . . . . . . . . . . . . 17 ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ⊆ (𝐹 “ (ℤ𝑚))
266265sseli 3911 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → 𝑛 ∈ (𝐹 “ (ℤ𝑚)))
267 fvelima 6706 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑛 ∈ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛)
268266, 267sylan2 595 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛)
269 inss1 4155 . . . . . . . . . . . . . . . . . . 19 ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ⊆ (𝑦(ball‘𝐷)(𝑟 / 2))
270269sseli 3911 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
271270adantl 485 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
272 eleq1a 2885 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘) = 𝑛 → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
273271, 272syl 17 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ((𝐹𝑘) = 𝑛 → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
274273reximdv 3232 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → (∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) = 𝑛 → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
275268, 274mpd 15 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚)))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
276275ex 416 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
277276exlimdv 1934 . . . . . . . . . . . 12 (Fun 𝐹 → (∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
278264, 277syl5bi 245 . . . . . . . . . . 11 (Fun 𝐹 → (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ𝑚))) ≠ ∅ → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
279239, 263, 278sylc 65 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
280 r19.29 3216 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))))
281 uznnssnn 12283 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (ℤ𝑚) ⊆ ℕ)
282281ad2antll 728 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (ℤ𝑚) ⊆ ℕ)
283 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))
2844ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐷 ∈ (∞Met‘𝑋))
285 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ+)
286285, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ+)
287286rpxrd 12420 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ*)
288 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑦𝑋)
2899ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐹:ℕ⟶𝑋)
290 eluznn 12306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
291290ad2ant2lr 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑟 ∈ ℝ+𝑚 ∈ ℕ) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → 𝑘 ∈ ℕ)
292291ad2ant2lr 747 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑘 ∈ ℕ)
293289, 292ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
294 elbl3 22999 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑦𝑋 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)))
295284, 287, 288, 293, 294syl22anc 837 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)))
296283, 295mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2))
2972ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
298 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑛 ∈ (ℤ𝑘))
299 eluznn 12306 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑘)) → 𝑛 ∈ ℕ)
300292, 298, 299syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑛 ∈ ℕ)
301289, 300ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝐹𝑛) ∈ 𝑋)
302 metcl 22939 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ)
303297, 293, 301, 302syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ)
304 metcl 22939 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑦𝑋) → ((𝐹𝑘)𝐷𝑦) ∈ ℝ)
305297, 293, 288, 304syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷𝑦) ∈ ℝ)
306286rpred 12419 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (𝑟 / 2) ∈ ℝ)
307 lt2add 11114 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐹𝑘)𝐷(𝐹𝑛)) ∈ ℝ ∧ ((𝐹𝑘)𝐷𝑦) ∈ ℝ) ∧ ((𝑟 / 2) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
308303, 305, 306, 306, 307syl22anc 837 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ((𝐹𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
309296, 308mpan2d 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2))))
310285rpcnd 12421 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℂ)
3113102halvesd 11871 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝑟 / 2) + (𝑟 / 2)) = 𝑟)
312311breq2d 5042 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟))
313309, 312sylibd 242 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟))
314 mettri2 22948 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋𝑦𝑋)) → ((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)))
315297, 293, 301, 288, 314syl13anc 1369 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)))
316 metcl 22939 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑛) ∈ 𝑋𝑦𝑋) → ((𝐹𝑛)𝐷𝑦) ∈ ℝ)
317297, 301, 288, 316syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((𝐹𝑛)𝐷𝑦) ∈ ℝ)
318303, 305readdcld 10659 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∈ ℝ)
319285rpred 12419 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
320 lelttr 10720 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹𝑛)𝐷𝑦) ∈ ℝ ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
321317, 318, 319, 320syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑛)𝐷𝑦) ≤ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) ∧ (((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
322315, 321mpand 694 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑛)) + ((𝐹𝑘)𝐷𝑦)) < 𝑟 → ((𝐹𝑛)𝐷𝑦) < 𝑟))
323313, 322syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ ((𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ𝑘))) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
324323anassrs 471 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) ∧ 𝑛 ∈ (ℤ𝑘)) → (((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑛)𝐷𝑦) < 𝑟))
325324ralimdva 3144 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ (𝑘 ∈ (ℤ𝑚) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
326325expr 460 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
327326com23 86 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → (∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ((𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
328327impd 414 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) ∧ 𝑘 ∈ (ℤ𝑚)) → ((∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
329328reximdva 3233 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
330 ssrexv 3982 . . . . . . . . . . . . 13 ((ℤ𝑚) ⊆ ℕ → (∃𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟 → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
331282, 329, 330sylsyld 61 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
332220, 331syldanl 604 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∃𝑘 ∈ (ℤ𝑚)(∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
333280, 332syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → ((∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ𝑚)(𝐹𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
334279, 333mpan2d 693 . . . . . . . . 9 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ (𝑟 ∈ ℝ+𝑚 ∈ ℕ)) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
335334anassrs 471 . . . . . . . 8 ((((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
336335rexlimdva 3243 . . . . . . 7 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ𝑚)∀𝑛 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟))
337237, 336mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)
338337ralrimiva 3149 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)
339 eqidd 2799 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
3405, 4, 129, 222, 339, 9lmmbrf 23866 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝑦𝑋 ∧ ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
341340adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝑦𝑋 ∧ ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ𝑘)((𝐹𝑛)𝐷𝑦) < 𝑟)))
342220, 338, 341mpbir2and 712 . . . 4 ((𝜑 ∧ ∀𝑢 ∈ ran ℤ𝑦 ∈ ((cls‘𝐽)‘(𝐹𝑢))) → 𝐹(⇝𝑡𝐽)𝑦)
343200, 342sylan2br 597 . . 3 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝐹(⇝𝑡𝐽)𝑦)
344 releldm 5778 . . 3 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑦) → 𝐹 ∈ dom (⇝𝑡𝐽))
345189, 343, 344sylancr 590 . 2 ((𝜑𝑦 {𝑘 ∣ ∃𝑢 ∈ ran ℤ𝑘 = ((cls‘𝐽)‘(𝐹𝑢))}) → 𝐹 ∈ dom (⇝𝑡𝐽))
346188, 345exlimddv 1936 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   cuni 4800   cint 4838   class class class wbr 5030  dom cdm 5519  ran crn 5520  cima 5522  Rel wrel 5524  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  Fincfn 8492  ficfi 8858  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  cz 11969  cuz 12231  +crp 12377  ∞Metcxmet 20076  Metcmet 20077  ballcbl 20078  MetOpencmopn 20081  Topctop 21498  Clsdccld 21621  clsccl 21623  𝑡clm 21831  Compccmp 21991  Cauccau 23857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-lm 21834  df-cmp 21992  df-cau 23860
This theorem is referenced by:  heibor1  35248
  Copyright terms: Public domain W3C validator