| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intsn | Structured version Visualization version GIF version | ||
| Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| intsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| intsn | ⊢ ∩ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | intsng 4963 | . 2 ⊢ (𝐴 ∈ V → ∩ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 ∩ cint 4926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3465 df-un 3936 df-in 3938 df-sn 4607 df-pr 4609 df-int 4927 |
| This theorem is referenced by: uniintsn 4965 intunsn 4967 op1stb 5456 op2ndb 6227 ssfii 9441 cf0 10273 cflecard 10275 uffix 23875 iotain 44393 |
| Copyright terms: Public domain | W3C validator |