Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intsn | Structured version Visualization version GIF version |
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
intsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intsn | ⊢ ∩ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | intsng 4913 | . 2 ⊢ (𝐴 ∈ V → ∩ {𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-un 3888 df-in 3890 df-sn 4559 df-pr 4561 df-int 4877 |
This theorem is referenced by: uniintsn 4915 intunsn 4917 op1stb 5380 op2ndb 6119 ssfii 9108 cf0 9938 cflecard 9940 uffix 22980 iotain 41924 |
Copyright terms: Public domain | W3C validator |