MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsn Structured version   Visualization version   GIF version

Theorem intsn 4951
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1 𝐴 ∈ V
Assertion
Ref Expression
intsn {𝐴} = 𝐴

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2 𝐴 ∈ V
2 intsng 4950 . 2 (𝐴 ∈ V → {𝐴} = 𝐴)
31, 2ax-mp 5 1 {𝐴} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-in 3924  df-sn 4593  df-pr 4595  df-int 4914
This theorem is referenced by:  uniintsn  4952  intunsn  4954  op1stb  5434  op2ndb  6203  ssfii  9377  cf0  10211  cflecard  10213  uffix  23815  iotain  44413
  Copyright terms: Public domain W3C validator