Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intsn | Structured version Visualization version GIF version |
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
intsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intsn | ⊢ ∩ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | intsng 4873 | . 2 ⊢ (𝐴 ∈ V → ∩ {𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 Vcvv 3398 {csn 4516 ∩ cint 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-v 3400 df-un 3848 df-in 3850 df-sn 4517 df-pr 4519 df-int 4837 |
This theorem is referenced by: uniintsn 4875 intunsn 4877 op1stb 5329 op2ndb 6059 ssfii 8958 cf0 9753 cflecard 9755 uffix 22674 iotain 41595 |
Copyright terms: Public domain | W3C validator |