![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invdisjrabw | Structured version Visualization version GIF version |
Description: Version of invdisjrab 5133 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
invdisjrabw | ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2901 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
2 | nfcv 2901 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | nfcsb1v 3917 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐶 | |
4 | 3 | nfeq1 2916 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐶 = 𝑦 |
5 | csbeq1a 3906 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑥⦌𝐶) | |
6 | 5 | eqeq1d 2732 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝐶 = 𝑦 ↔ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) |
7 | 1, 2, 4, 6 | elrabf 3678 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} ↔ (𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) |
8 | simprr 769 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) → ⦋𝑧 / 𝑥⦌𝐶 = 𝑦) | |
9 | 7, 8 | sylan2b 592 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}) → ⦋𝑧 / 𝑥⦌𝐶 = 𝑦) |
10 | 9 | rgen2 3195 | . 2 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}⦋𝑧 / 𝑥⦌𝐶 = 𝑦 |
11 | invdisj 5131 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}⦋𝑧 / 𝑥⦌𝐶 = 𝑦 → Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}) | |
12 | 10, 11 | ax-mp 5 | 1 ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 {crab 3430 ⦋csb 3892 Disj wdisj 5112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rmo 3374 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-disj 5113 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |