Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invdisjrabw | Structured version Visualization version GIF version |
Description: Version of invdisjrab 5019 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
invdisjrabw | ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2920 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
2 | nfcv 2920 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | nfcsb1v 3830 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐶 | |
4 | 3 | nfeq1 2935 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐶 = 𝑦 |
5 | csbeq1a 3820 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑥⦌𝐶) | |
6 | 5 | eqeq1d 2761 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝐶 = 𝑦 ↔ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) |
7 | 1, 2, 4, 6 | elrabf 3599 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} ↔ (𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) |
8 | simprr 773 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) → ⦋𝑧 / 𝑥⦌𝐶 = 𝑦) | |
9 | 7, 8 | sylan2b 597 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}) → ⦋𝑧 / 𝑥⦌𝐶 = 𝑦) |
10 | 9 | rgen2 3133 | . 2 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}⦋𝑧 / 𝑥⦌𝐶 = 𝑦 |
11 | invdisj 5017 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}⦋𝑧 / 𝑥⦌𝐶 = 𝑦 → Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}) | |
12 | 10, 11 | ax-mp 5 | 1 ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 {crab 3075 ⦋csb 3806 Disj wdisj 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-disj 4999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |