MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisjrabw Structured version   Visualization version   GIF version

Theorem invdisjrabw 5055
Description: Version of invdisjrab 5056 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
invdisjrabw Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem invdisjrabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . . . 5 𝑥𝑧
2 nfcv 2906 . . . . 5 𝑥𝐵
3 nfcsb1v 3853 . . . . . 6 𝑥𝑧 / 𝑥𝐶
43nfeq1 2921 . . . . 5 𝑥𝑧 / 𝑥𝐶 = 𝑦
5 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑧𝐶 = 𝑧 / 𝑥𝐶)
65eqeq1d 2740 . . . . 5 (𝑥 = 𝑧 → (𝐶 = 𝑦𝑧 / 𝑥𝐶 = 𝑦))
71, 2, 4, 6elrabf 3613 . . . 4 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} ↔ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦))
8 simprr 769 . . . 4 ((𝑦𝐴 ∧ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦)) → 𝑧 / 𝑥𝐶 = 𝑦)
97, 8sylan2b 593 . . 3 ((𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}) → 𝑧 / 𝑥𝐶 = 𝑦)
109rgen2 3126 . 2 𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦
11 invdisj 5054 . 2 (∀𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦})
1210, 11ax-mp 5 1 Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  csb 3828  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-disj 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator