MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisjrabw Structured version   Visualization version   GIF version

Theorem invdisjrabw 5138
Description: Version of invdisjrab 5139 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by GG, 26-Jan-2024.)
Assertion
Ref Expression
invdisjrabw Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem invdisjrabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2892 . . . . 5 𝑥𝑧
2 nfcv 2892 . . . . 5 𝑥𝐵
3 nfcsb1v 3917 . . . . . 6 𝑥𝑧 / 𝑥𝐶
43nfeq1 2908 . . . . 5 𝑥𝑧 / 𝑥𝐶 = 𝑦
5 csbeq1a 3906 . . . . . 6 (𝑥 = 𝑧𝐶 = 𝑧 / 𝑥𝐶)
65eqeq1d 2728 . . . . 5 (𝑥 = 𝑧 → (𝐶 = 𝑦𝑧 / 𝑥𝐶 = 𝑦))
71, 2, 4, 6elrabf 3677 . . . 4 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} ↔ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦))
8 simprr 771 . . . 4 ((𝑦𝐴 ∧ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦)) → 𝑧 / 𝑥𝐶 = 𝑦)
97, 8sylan2b 592 . . 3 ((𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}) → 𝑧 / 𝑥𝐶 = 𝑦)
109rgen2 3188 . 2 𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦
11 invdisj 5137 . 2 (∀𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦})
1210, 11ax-mp 5 1 Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  wral 3051  {crab 3419  csb 3892  Disj wdisj 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rmo 3364  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-disj 5119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator