![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2922 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Ⅎwnf 1781 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-nfc 2895 |
This theorem is referenced by: euabsn 4751 invdisjrab 5153 disjxun 5164 iunopeqop 5540 fvelimad 6989 opabiotafun 7002 fvmptt 7049 eusvobj2 7440 oprabv 7510 ovmpodv2 7608 ov3 7613 dom2lem 9052 ttrcltr 9785 pwfseqlem2 10728 fsumf1o 15771 isummulc2 15810 fsum00 15846 isumshft 15887 zprod 15985 fprodf1o 15994 prodss 15995 fprodle 16044 iserodd 16882 yonedalem4b 18346 gsum2d2lem 20015 gsummptnn0fz 20028 gsummoncoe1 22333 elptr2 23603 ovoliunnul 25561 mbfinf 25719 itg2splitlem 25803 dgrle 26302 noinfbnd1 27792 disjabrex 32604 disjabrexf 32605 disjunsn 32616 voliune 34193 volfiniune 34194 bnj958 34916 bnj1491 35033 finminlem 36284 poimirlem23 37603 poimirlem28 37608 cdleme43fsv1snlem 40377 ltrniotaval 40538 cdlemksv2 40804 cdlemkuv2 40824 cdlemk36 40870 cdlemkid 40893 cdlemk19x 40900 eq0rabdioph 42732 monotoddzz 42900 disjinfi 45099 stoweidlem28 45949 stoweidlem48 45969 stoweidlem58 45979 etransclem32 46187 sge0gtfsumgt 46364 voliunsge0lem 46393 |
Copyright terms: Public domain | W3C validator |