Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2917 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Ⅎwnf 1784 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-cleq 2728 df-nfc 2886 |
This theorem is referenced by: euabsn 4673 invdisjrabw 5074 invdisjrab 5075 disjxun 5087 iunopeqop 5459 fvelimad 6886 opabiotafun 6899 fvmptt 6945 eusvobj2 7322 oprabv 7389 ovmpodv2 7485 ov3 7489 dom2lem 8845 ttrcltr 9565 pwfseqlem2 10508 fsumf1o 15526 isummulc2 15565 fsum00 15601 isumshft 15642 zprod 15738 fprodf1o 15747 prodss 15748 fprodle 15797 iserodd 16625 yonedalem4b 18083 gsum2d2lem 19661 gsummptnn0fz 19674 gsummoncoe1 21573 elptr2 22823 ovoliunnul 24769 mbfinf 24927 itg2splitlem 25011 dgrle 25502 noinfbnd1 26975 disjabrex 31149 disjabrexf 31150 disjunsn 31161 voliune 32436 volfiniune 32437 bnj958 33160 bnj1491 33277 finminlem 34598 poimirlem23 35898 poimirlem28 35903 cdleme43fsv1snlem 38681 ltrniotaval 38842 cdlemksv2 39108 cdlemkuv2 39128 cdlemk36 39174 cdlemkid 39197 cdlemk19x 39204 eq0rabdioph 40848 monotoddzz 41016 disjinfi 43047 stoweidlem28 43894 stoweidlem48 43914 stoweidlem58 43924 etransclem32 44132 sge0gtfsumgt 44307 voliunsge0lem 44336 |
Copyright terms: Public domain | W3C validator |