| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2905 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 |
| This theorem is referenced by: euabsn 4690 invdisjrab 5094 disjxun 5105 iunopeqop 5481 fvelimad 6928 opabiotafun 6941 fvmptt 6988 eusvobj2 7379 oprabv 7449 ovmpodv2 7547 ov3 7552 dom2lem 8963 ttrcltr 9669 pwfseqlem2 10612 fsumf1o 15689 isummulc2 15728 fsum00 15764 isumshft 15805 zprod 15903 fprodf1o 15912 prodss 15913 fprodle 15962 iserodd 16806 yonedalem4b 18237 gsum2d2lem 19903 gsummptnn0fz 19916 gsummoncoe1 22195 elptr2 23461 ovoliunnul 25408 mbfinf 25566 itg2splitlem 25649 dgrle 26148 noinfbnd1 27641 disjabrex 32511 disjabrexf 32512 disjunsn 32523 voliune 34219 volfiniune 34220 bnj958 34930 bnj1491 35047 finminlem 36306 poimirlem23 37637 poimirlem28 37642 cdleme43fsv1snlem 40414 ltrniotaval 40575 cdlemksv2 40841 cdlemkuv2 40861 cdlemk36 40907 cdlemkid 40930 cdlemk19x 40937 eq0rabdioph 42764 monotoddzz 42932 disjinfi 45186 dvnprodlem1 45944 stoweidlem28 46026 stoweidlem48 46046 stoweidlem58 46056 etransclem32 46264 sge0f1o 46380 sge0gtfsumgt 46441 voliunsge0lem 46470 |
| Copyright terms: Public domain | W3C validator |