| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2908 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Ⅎwnf 1784 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-nfc 2881 |
| This theorem is referenced by: euabsn 4674 invdisjrab 5073 disjxun 5084 iunopeqop 5456 fvelimad 6884 opabiotafun 6897 fvmptt 6944 eusvobj2 7333 oprabv 7401 ovmpodv2 7499 ov3 7504 dom2lem 8909 ttrcltr 9601 pwfseqlem2 10545 fsumf1o 15625 isummulc2 15664 fsum00 15700 isumshft 15741 zprod 15839 fprodf1o 15848 prodss 15849 fprodle 15898 iserodd 16742 yonedalem4b 18177 gsum2d2lem 19880 gsummptnn0fz 19893 gsummoncoe1 22218 elptr2 23484 ovoliunnul 25430 mbfinf 25588 itg2splitlem 25671 dgrle 26170 noinfbnd1 27663 disjabrex 32554 disjabrexf 32555 disjunsn 32566 voliune 34234 volfiniune 34235 bnj958 34944 bnj1491 35061 finminlem 36352 poimirlem23 37683 poimirlem28 37688 cdleme43fsv1snlem 40459 ltrniotaval 40620 cdlemksv2 40886 cdlemkuv2 40906 cdlemk36 40952 cdlemkid 40975 cdlemk19x 40982 eq0rabdioph 42809 monotoddzz 42976 disjinfi 45229 dvnprodlem1 45984 stoweidlem28 46066 stoweidlem48 46086 stoweidlem58 46096 etransclem32 46304 sge0f1o 46420 sge0gtfsumgt 46481 voliunsge0lem 46510 |
| Copyright terms: Public domain | W3C validator |