| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2912 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2727 df-nfc 2885 |
| This theorem is referenced by: euabsn 4702 invdisjrab 5106 disjxun 5117 iunopeqop 5496 fvelimad 6946 opabiotafun 6959 fvmptt 7006 eusvobj2 7397 oprabv 7467 ovmpodv2 7565 ov3 7570 dom2lem 9006 ttrcltr 9730 pwfseqlem2 10673 fsumf1o 15739 isummulc2 15778 fsum00 15814 isumshft 15855 zprod 15953 fprodf1o 15962 prodss 15963 fprodle 16012 iserodd 16855 yonedalem4b 18288 gsum2d2lem 19954 gsummptnn0fz 19967 gsummoncoe1 22246 elptr2 23512 ovoliunnul 25460 mbfinf 25618 itg2splitlem 25701 dgrle 26200 noinfbnd1 27693 disjabrex 32563 disjabrexf 32564 disjunsn 32575 voliune 34260 volfiniune 34261 bnj958 34971 bnj1491 35088 finminlem 36336 poimirlem23 37667 poimirlem28 37672 cdleme43fsv1snlem 40439 ltrniotaval 40600 cdlemksv2 40866 cdlemkuv2 40886 cdlemk36 40932 cdlemkid 40955 cdlemk19x 40962 eq0rabdioph 42799 monotoddzz 42967 disjinfi 45216 dvnprodlem1 45975 stoweidlem28 46057 stoweidlem48 46077 stoweidlem58 46087 etransclem32 46295 sge0f1o 46411 sge0gtfsumgt 46472 voliunsge0lem 46501 |
| Copyright terms: Public domain | W3C validator |