Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2919 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Ⅎwnf 1787 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-nfc 2888 |
This theorem is referenced by: euabsn 4659 invdisjrabw 5055 invdisjrab 5056 disjxun 5068 iunopeqop 5429 fvelimad 6818 opabiotafun 6831 fvmptt 6877 eusvobj2 7248 oprabv 7313 ovmpodv2 7409 ov3 7413 dom2lem 8735 pwfseqlem2 10346 fsumf1o 15363 isummulc2 15402 fsum00 15438 isumshft 15479 zprod 15575 fprodf1o 15584 prodss 15585 fprodle 15634 iserodd 16464 yonedalem4b 17910 gsum2d2lem 19489 gsummptnn0fz 19502 gsummoncoe1 21385 elptr2 22633 ovoliunnul 24576 mbfinf 24734 itg2splitlem 24818 dgrle 25309 disjabrex 30822 disjabrexf 30823 disjunsn 30834 voliune 32097 volfiniune 32098 bnj958 32820 bnj1491 32937 ttrcltr 33702 noinfbnd1 33859 finminlem 34434 poimirlem23 35727 poimirlem28 35732 cdleme43fsv1snlem 38361 ltrniotaval 38522 cdlemksv2 38788 cdlemkuv2 38808 cdlemk36 38854 cdlemkid 38877 cdlemk19x 38884 eq0rabdioph 40514 monotoddzz 40681 disjinfi 42620 stoweidlem28 43459 stoweidlem48 43479 stoweidlem58 43489 etransclem32 43697 sge0gtfsumgt 43871 voliunsge0lem 43900 |
Copyright terms: Public domain | W3C validator |