| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2905 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 |
| This theorem is referenced by: euabsn 4680 invdisjrab 5082 disjxun 5093 iunopeqop 5468 fvelimad 6894 opabiotafun 6907 fvmptt 6954 eusvobj2 7345 oprabv 7413 ovmpodv2 7511 ov3 7516 dom2lem 8924 ttrcltr 9631 pwfseqlem2 10572 fsumf1o 15649 isummulc2 15688 fsum00 15724 isumshft 15765 zprod 15863 fprodf1o 15872 prodss 15873 fprodle 15922 iserodd 16766 yonedalem4b 18201 gsum2d2lem 19871 gsummptnn0fz 19884 gsummoncoe1 22212 elptr2 23478 ovoliunnul 25425 mbfinf 25583 itg2splitlem 25666 dgrle 26165 noinfbnd1 27658 disjabrex 32545 disjabrexf 32546 disjunsn 32557 voliune 34215 volfiniune 34216 bnj958 34926 bnj1491 35043 finminlem 36311 poimirlem23 37642 poimirlem28 37647 cdleme43fsv1snlem 40419 ltrniotaval 40580 cdlemksv2 40846 cdlemkuv2 40866 cdlemk36 40912 cdlemkid 40935 cdlemk19x 40942 eq0rabdioph 42769 monotoddzz 42936 disjinfi 45190 dvnprodlem1 45947 stoweidlem28 46029 stoweidlem48 46049 stoweidlem58 46059 etransclem32 46267 sge0f1o 46383 sge0gtfsumgt 46444 voliunsge0lem 46473 |
| Copyright terms: Public domain | W3C validator |