Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2917 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 Ⅎwnf 1791 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-cleq 2729 df-nfc 2886 |
This theorem is referenced by: euabsn 4642 invdisjrabw 5038 invdisjrab 5039 disjxun 5051 iunopeqop 5404 fvelimad 6779 opabiotafun 6792 fvmptt 6838 eusvobj2 7206 oprabv 7271 ovmpodv2 7367 ov3 7371 dom2lem 8668 pwfseqlem2 10273 fsumf1o 15287 isummulc2 15326 fsum00 15362 isumshft 15403 zprod 15499 fprodf1o 15508 prodss 15509 fprodle 15558 iserodd 16388 yonedalem4b 17784 gsum2d2lem 19358 gsummptnn0fz 19371 gsummoncoe1 21225 elptr2 22471 ovoliunnul 24404 mbfinf 24562 itg2splitlem 24646 dgrle 25137 disjabrex 30640 disjabrexf 30641 disjunsn 30652 voliune 31909 volfiniune 31910 bnj958 32633 bnj1491 32750 ttrcltr 33515 noinfbnd1 33669 finminlem 34244 poimirlem23 35537 poimirlem28 35542 cdleme43fsv1snlem 38171 ltrniotaval 38332 cdlemksv2 38598 cdlemkuv2 38618 cdlemk36 38664 cdlemkid 38687 cdlemk19x 38694 eq0rabdioph 40301 monotoddzz 40468 disjinfi 42404 stoweidlem28 43244 stoweidlem48 43264 stoweidlem58 43274 etransclem32 43482 sge0gtfsumgt 43656 voliunsge0lem 43685 |
Copyright terms: Public domain | W3C validator |