Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2920 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Ⅎwnf 1786 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-nfc 2889 |
This theorem is referenced by: euabsn 4662 invdisjrabw 5059 invdisjrab 5060 disjxun 5072 iunopeqop 5435 fvelimad 6836 opabiotafun 6849 fvmptt 6895 eusvobj2 7268 oprabv 7335 ovmpodv2 7431 ov3 7435 dom2lem 8780 ttrcltr 9474 pwfseqlem2 10415 fsumf1o 15435 isummulc2 15474 fsum00 15510 isumshft 15551 zprod 15647 fprodf1o 15656 prodss 15657 fprodle 15706 iserodd 16536 yonedalem4b 17994 gsum2d2lem 19574 gsummptnn0fz 19587 gsummoncoe1 21475 elptr2 22725 ovoliunnul 24671 mbfinf 24829 itg2splitlem 24913 dgrle 25404 disjabrex 30921 disjabrexf 30922 disjunsn 30933 voliune 32197 volfiniune 32198 bnj958 32920 bnj1491 33037 noinfbnd1 33932 finminlem 34507 poimirlem23 35800 poimirlem28 35805 cdleme43fsv1snlem 38434 ltrniotaval 38595 cdlemksv2 38861 cdlemkuv2 38881 cdlemk36 38927 cdlemkid 38950 cdlemk19x 38957 eq0rabdioph 40598 monotoddzz 40765 disjinfi 42731 stoweidlem28 43569 stoweidlem48 43589 stoweidlem58 43599 etransclem32 43807 sge0gtfsumgt 43981 voliunsge0lem 44010 |
Copyright terms: Public domain | W3C validator |