![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2916 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 Ⅎwnf 1779 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-cleq 2726 df-nfc 2889 |
This theorem is referenced by: euabsn 4730 invdisjrab 5134 disjxun 5145 iunopeqop 5530 fvelimad 6975 opabiotafun 6988 fvmptt 7035 eusvobj2 7422 oprabv 7492 ovmpodv2 7590 ov3 7595 dom2lem 9030 ttrcltr 9753 pwfseqlem2 10696 fsumf1o 15755 isummulc2 15794 fsum00 15830 isumshft 15871 zprod 15969 fprodf1o 15978 prodss 15979 fprodle 16028 iserodd 16868 yonedalem4b 18332 gsum2d2lem 20005 gsummptnn0fz 20018 gsummoncoe1 22327 elptr2 23597 ovoliunnul 25555 mbfinf 25713 itg2splitlem 25797 dgrle 26296 noinfbnd1 27788 disjabrex 32601 disjabrexf 32602 disjunsn 32613 voliune 34209 volfiniune 34210 bnj958 34932 bnj1491 35049 finminlem 36300 poimirlem23 37629 poimirlem28 37634 cdleme43fsv1snlem 40402 ltrniotaval 40563 cdlemksv2 40829 cdlemkuv2 40849 cdlemk36 40895 cdlemkid 40918 cdlemk19x 40925 eq0rabdioph 42763 monotoddzz 42931 disjinfi 45134 dvnprodlem1 45901 stoweidlem28 45983 stoweidlem48 46003 stoweidlem58 46013 etransclem32 46221 sge0f1o 46337 sge0gtfsumgt 46398 voliunsge0lem 46427 |
Copyright terms: Public domain | W3C validator |