![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2917 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Ⅎwnf 1786 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-cleq 2725 df-nfc 2886 |
This theorem is referenced by: euabsn 4731 invdisjrabw 5134 invdisjrab 5135 disjxun 5147 iunopeqop 5522 fvelimad 6960 opabiotafun 6973 fvmptt 7019 eusvobj2 7401 oprabv 7469 ovmpodv2 7566 ov3 7570 dom2lem 8988 ttrcltr 9711 pwfseqlem2 10654 fsumf1o 15669 isummulc2 15708 fsum00 15744 isumshft 15785 zprod 15881 fprodf1o 15890 prodss 15891 fprodle 15940 iserodd 16768 yonedalem4b 18229 gsum2d2lem 19841 gsummptnn0fz 19854 gsummoncoe1 21828 elptr2 23078 ovoliunnul 25024 mbfinf 25182 itg2splitlem 25266 dgrle 25757 noinfbnd1 27232 disjabrex 31813 disjabrexf 31814 disjunsn 31825 voliune 33227 volfiniune 33228 bnj958 33951 bnj1491 34068 finminlem 35203 poimirlem23 36511 poimirlem28 36516 cdleme43fsv1snlem 39291 ltrniotaval 39452 cdlemksv2 39718 cdlemkuv2 39738 cdlemk36 39784 cdlemkid 39807 cdlemk19x 39814 eq0rabdioph 41514 monotoddzz 41682 disjinfi 43891 stoweidlem28 44744 stoweidlem48 44764 stoweidlem58 44774 etransclem32 44982 sge0gtfsumgt 45159 voliunsge0lem 45188 |
Copyright terms: Public domain | W3C validator |