| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2906 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2722 df-nfc 2879 |
| This theorem is referenced by: euabsn 4693 invdisjrab 5097 disjxun 5108 iunopeqop 5484 fvelimad 6931 opabiotafun 6944 fvmptt 6991 eusvobj2 7382 oprabv 7452 ovmpodv2 7550 ov3 7555 dom2lem 8966 ttrcltr 9676 pwfseqlem2 10619 fsumf1o 15696 isummulc2 15735 fsum00 15771 isumshft 15812 zprod 15910 fprodf1o 15919 prodss 15920 fprodle 15969 iserodd 16813 yonedalem4b 18244 gsum2d2lem 19910 gsummptnn0fz 19923 gsummoncoe1 22202 elptr2 23468 ovoliunnul 25415 mbfinf 25573 itg2splitlem 25656 dgrle 26155 noinfbnd1 27648 disjabrex 32518 disjabrexf 32519 disjunsn 32530 voliune 34226 volfiniune 34227 bnj958 34937 bnj1491 35054 finminlem 36313 poimirlem23 37644 poimirlem28 37649 cdleme43fsv1snlem 40421 ltrniotaval 40582 cdlemksv2 40848 cdlemkuv2 40868 cdlemk36 40914 cdlemkid 40937 cdlemk19x 40944 eq0rabdioph 42771 monotoddzz 42939 disjinfi 45193 dvnprodlem1 45951 stoweidlem28 46033 stoweidlem48 46053 stoweidlem58 46063 etransclem32 46271 sge0f1o 46387 sge0gtfsumgt 46448 voliunsge0lem 46477 |
| Copyright terms: Public domain | W3C validator |