| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2909 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Ⅎwnf 1784 Ⅎwnfc 2880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2725 df-nfc 2882 |
| This theorem is referenced by: euabsn 4680 invdisjrab 5082 disjxun 5093 iunopeqop 5466 fvelimad 6898 opabiotafun 6911 fvmptt 6958 eusvobj2 7347 oprabv 7415 ovmpodv2 7513 ov3 7518 dom2lem 8925 ttrcltr 9617 pwfseqlem2 10561 fsumf1o 15637 isummulc2 15676 fsum00 15712 isumshft 15753 zprod 15851 fprodf1o 15860 prodss 15861 fprodle 15910 iserodd 16754 yonedalem4b 18190 gsum2d2lem 19893 gsummptnn0fz 19906 gsummoncoe1 22243 elptr2 23509 ovoliunnul 25455 mbfinf 25613 itg2splitlem 25696 dgrle 26195 noinfbnd1 27688 disjabrex 32583 disjabrexf 32584 disjunsn 32595 voliune 34314 volfiniune 34315 bnj958 35024 bnj1491 35141 finminlem 36434 poimirlem23 37756 poimirlem28 37761 cdleme43fsv1snlem 40592 ltrniotaval 40753 cdlemksv2 41019 cdlemkuv2 41039 cdlemk36 41085 cdlemkid 41108 cdlemk19x 41115 eq0rabdioph 42933 monotoddzz 43100 disjinfi 45352 dvnprodlem1 46106 stoweidlem28 46188 stoweidlem48 46208 stoweidlem58 46218 etransclem32 46426 sge0f1o 46542 sge0gtfsumgt 46603 voliunsge0lem 46632 |
| Copyright terms: Public domain | W3C validator |