| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq1 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2905 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 |
| This theorem is referenced by: euabsn 4686 invdisjrab 5089 disjxun 5100 iunopeqop 5476 fvelimad 6910 opabiotafun 6923 fvmptt 6970 eusvobj2 7361 oprabv 7429 ovmpodv2 7527 ov3 7532 dom2lem 8940 ttrcltr 9645 pwfseqlem2 10588 fsumf1o 15665 isummulc2 15704 fsum00 15740 isumshft 15781 zprod 15879 fprodf1o 15888 prodss 15889 fprodle 15938 iserodd 16782 yonedalem4b 18213 gsum2d2lem 19879 gsummptnn0fz 19892 gsummoncoe1 22171 elptr2 23437 ovoliunnul 25384 mbfinf 25542 itg2splitlem 25625 dgrle 26124 noinfbnd1 27617 disjabrex 32484 disjabrexf 32485 disjunsn 32496 voliune 34192 volfiniune 34193 bnj958 34903 bnj1491 35020 finminlem 36279 poimirlem23 37610 poimirlem28 37615 cdleme43fsv1snlem 40387 ltrniotaval 40548 cdlemksv2 40814 cdlemkuv2 40834 cdlemk36 40880 cdlemkid 40903 cdlemk19x 40910 eq0rabdioph 42737 monotoddzz 42905 disjinfi 45159 dvnprodlem1 45917 stoweidlem28 45999 stoweidlem48 46019 stoweidlem58 46029 etransclem32 46237 sge0f1o 46353 sge0gtfsumgt 46414 voliunsge0lem 46443 |
| Copyright terms: Public domain | W3C validator |