![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version |
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotaex | ⊢ (℩𝑥𝜑) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval2 6541 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | vex 3492 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | eqeltrdi 2852 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
4 | 3 | exlimiv 1929 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
5 | iotanul2 6543 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
6 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
7 | 5, 6 | eqeltrdi 2852 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 Vcvv 3488 ∅c0 4352 {csn 4648 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: iota4an 6555 fvex 6933 riotaex 7408 erov 8872 iunfictbso 10183 isf32lem9 10430 sumex 15736 prodex 15953 pcval 16891 grpidval 18699 fn0g 18701 gsumvalx 18714 psgnfn 19543 psgnval 19549 dchrptlem1 27326 lgsdchrval 27416 lgsdchr 27417 nosupno 27766 nosupdm 27767 nosupbday 27768 nosupfv 27769 nosupres 27770 nosupbnd1lem1 27771 noinfno 27781 noinfdm 27782 noinffv 27784 bnj1366 34805 bj-finsumval0 37251 ellimciota 45535 fourierdlem36 46064 eubrdm 46951 dfatafv2ex 47128 afv2ex 47129 funressndmafv2rn 47138 |
Copyright terms: Public domain | W3C validator |