| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version | ||
| Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaex | ⊢ (℩𝑥𝜑) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6452 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | eqeltrdi 2839 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 4 | 3 | exlimiv 1931 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 5 | iotanul2 6454 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 6 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | eqeltrdi 2839 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∅c0 4283 {csn 4576 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 |
| This theorem is referenced by: iota4an 6463 fvex 6835 riotaex 7307 erov 8738 iunfictbso 10005 isf32lem9 10252 sumex 15595 prodex 15812 pcval 16756 grpidval 18569 fn0g 18571 gsumvalx 18584 psgnfn 19414 psgnval 19420 dchrptlem1 27203 lgsdchrval 27293 lgsdchr 27294 nosupno 27643 nosupdm 27644 nosupbday 27645 nosupfv 27646 nosupres 27647 nosupbnd1lem1 27648 noinfno 27658 noinfdm 27659 noinffv 27661 bnj1366 34839 bj-finsumval0 37325 ellimciota 45660 fourierdlem36 46187 eubrdm 47073 dfatafv2ex 47250 afv2ex 47251 funressndmafv2rn 47260 |
| Copyright terms: Public domain | W3C validator |