MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaex Structured version   Visualization version   GIF version

Theorem iotaex 6457
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotaex (℩𝑥𝜑) ∈ V

Proof of Theorem iotaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotaval2 6452 . . . 4 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 vex 3440 . . . 4 𝑦 ∈ V
31, 2eqeltrdi 2839 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V)
43exlimiv 1931 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V)
5 iotanul2 6454 . . 3 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
6 0ex 5245 . . 3 ∅ ∈ V
75, 6eqeltrdi 2839 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V)
84, 7pm2.61i 182 1 (℩𝑥𝜑) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wex 1780  wcel 2111  {cab 2709  Vcvv 3436  c0 4283  {csn 4576  cio 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-sn 4577  df-pr 4579  df-uni 4860  df-iota 6437
This theorem is referenced by:  iota4an  6463  fvex  6835  riotaex  7307  erov  8738  iunfictbso  10005  isf32lem9  10252  sumex  15595  prodex  15812  pcval  16756  grpidval  18569  fn0g  18571  gsumvalx  18584  psgnfn  19414  psgnval  19420  dchrptlem1  27203  lgsdchrval  27293  lgsdchr  27294  nosupno  27643  nosupdm  27644  nosupbday  27645  nosupfv  27646  nosupres  27647  nosupbnd1lem1  27648  noinfno  27658  noinfdm  27659  noinffv  27661  bnj1366  34839  bj-finsumval0  37325  ellimciota  45660  fourierdlem36  46187  eubrdm  47073  dfatafv2ex  47250  afv2ex  47251  funressndmafv2rn  47260
  Copyright terms: Public domain W3C validator