| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version | ||
| Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaex | ⊢ (℩𝑥𝜑) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6457 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | vex 3442 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | eqeltrdi 2836 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 5 | iotanul2 6459 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 6 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | eqeltrdi 2836 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 Vcvv 3438 ∅c0 4286 {csn 4579 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 df-iota 6442 |
| This theorem is referenced by: iota4an 6468 fvex 6839 riotaex 7314 erov 8748 iunfictbso 10027 isf32lem9 10274 sumex 15613 prodex 15830 pcval 16774 grpidval 18553 fn0g 18555 gsumvalx 18568 psgnfn 19398 psgnval 19404 dchrptlem1 27191 lgsdchrval 27281 lgsdchr 27282 nosupno 27631 nosupdm 27632 nosupbday 27633 nosupfv 27634 nosupres 27635 nosupbnd1lem1 27636 noinfno 27646 noinfdm 27647 noinffv 27649 bnj1366 34795 bj-finsumval0 37258 ellimciota 45596 fourierdlem36 46125 eubrdm 47021 dfatafv2ex 47198 afv2ex 47199 funressndmafv2rn 47208 |
| Copyright terms: Public domain | W3C validator |