![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version |
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2135, ax-11 2152, ax-12 2169. (Revised by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotaex | ⊢ (℩𝑥𝜑) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval2 6510 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | vex 3476 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | eqeltrdi 2839 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
4 | 3 | exlimiv 1931 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
5 | iotanul2 6512 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
6 | 0ex 5306 | . . 3 ⊢ ∅ ∈ V | |
7 | 5, 6 | eqeltrdi 2839 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2707 Vcvv 3472 ∅c0 4321 {csn 4627 ℩cio 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 df-uni 4908 df-iota 6494 |
This theorem is referenced by: iota4an 6524 fvex 6903 riotaex 7371 erov 8810 iunfictbso 10111 isf32lem9 10358 sumex 15638 prodex 15855 pcval 16781 grpidval 18586 fn0g 18588 gsumvalx 18601 psgnfn 19410 psgnval 19416 dchrptlem1 27003 lgsdchrval 27093 lgsdchr 27094 nosupno 27442 nosupdm 27443 nosupbday 27444 nosupfv 27445 nosupres 27446 nosupbnd1lem1 27447 noinfno 27457 noinfdm 27458 noinffv 27460 bnj1366 34138 bj-finsumval0 36469 ellimciota 44628 fourierdlem36 45157 eubrdm 46044 dfatafv2ex 46219 afv2ex 46220 funressndmafv2rn 46229 |
Copyright terms: Public domain | W3C validator |