Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version |
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotaex | ⊢ (℩𝑥𝜑) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6406 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
2 | 1 | eqcomd 2746 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
3 | 2 | eximi 1841 | . . 3 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑)) |
4 | eu6 2576 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
5 | isset 3444 | . . 3 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑)) | |
6 | 3, 4, 5 | 3imtr4i 292 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
7 | iotanul 6410 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
8 | 0ex 5235 | . . 3 ⊢ ∅ ∈ V | |
9 | 7, 8 | eqeltrdi 2849 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1540 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∃!weu 2570 Vcvv 3431 ∅c0 4262 ℩cio 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4568 df-pr 4570 df-uni 4846 df-iota 6390 |
This theorem is referenced by: iota4an 6414 fvex 6784 riotaex 7232 erov 8586 iunfictbso 9871 isf32lem9 10118 sumex 15397 prodex 15615 pcval 16543 grpidval 18343 fn0g 18345 gsumvalx 18358 psgnfn 19107 psgnval 19113 dchrptlem1 26410 lgsdchrval 26500 lgsdchr 26501 bnj1366 32805 nosupno 33902 nosupdm 33903 nosupbday 33904 nosupfv 33905 nosupres 33906 nosupbnd1lem1 33907 noinfno 33917 noinfdm 33918 noinffv 33920 bj-finsumval0 35452 ellimciota 43126 fourierdlem36 43655 eubrdm 44498 dfatafv2ex 44673 afv2ex 44674 funressndmafv2rn 44683 |
Copyright terms: Public domain | W3C validator |