|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version | ||
| Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2140, ax-11 2156, ax-12 2176. (Revised by SN, 6-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| iotaex | ⊢ (℩𝑥𝜑) ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iotaval2 6528 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | vex 3483 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | eqeltrdi 2848 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) | 
| 4 | 3 | exlimiv 1929 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) | 
| 5 | iotanul2 6530 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 6 | 0ex 5306 | . . 3 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | eqeltrdi 2848 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) | 
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 Vcvv 3479 ∅c0 4332 {csn 4625 ℩cio 6511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-sn 4626 df-pr 4628 df-uni 4907 df-iota 6513 | 
| This theorem is referenced by: iota4an 6542 fvex 6918 riotaex 7393 erov 8855 iunfictbso 10155 isf32lem9 10402 sumex 15725 prodex 15942 pcval 16883 grpidval 18675 fn0g 18677 gsumvalx 18690 psgnfn 19520 psgnval 19526 dchrptlem1 27309 lgsdchrval 27399 lgsdchr 27400 nosupno 27749 nosupdm 27750 nosupbday 27751 nosupfv 27752 nosupres 27753 nosupbnd1lem1 27754 noinfno 27764 noinfdm 27765 noinffv 27767 bnj1366 34844 bj-finsumval0 37287 ellimciota 45634 fourierdlem36 46163 eubrdm 47053 dfatafv2ex 47230 afv2ex 47231 funressndmafv2rn 47240 | 
| Copyright terms: Public domain | W3C validator |