| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version | ||
| Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2146, ax-11 2162, ax-12 2182. (Revised by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaex | ⊢ (℩𝑥𝜑) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6459 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | vex 3441 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | eqeltrdi 2841 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 4 | 3 | exlimiv 1931 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 5 | iotanul2 6461 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 6 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | eqeltrdi 2841 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 Vcvv 3437 ∅c0 4282 {csn 4577 ℩cio 6442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6444 |
| This theorem is referenced by: iota4an 6470 fvex 6843 riotaex 7315 erov 8746 iunfictbso 10014 isf32lem9 10261 sumex 15599 prodex 15816 pcval 16760 grpidval 18573 fn0g 18575 gsumvalx 18588 psgnfn 19417 psgnval 19423 dchrptlem1 27205 lgsdchrval 27295 lgsdchr 27296 nosupno 27645 nosupdm 27646 nosupbday 27647 nosupfv 27648 nosupres 27649 nosupbnd1lem1 27650 noinfno 27660 noinfdm 27661 noinffv 27663 bnj1366 34864 bj-finsumval0 37352 preex 38527 ellimciota 45741 fourierdlem36 46268 eubrdm 47163 dfatafv2ex 47340 afv2ex 47341 funressndmafv2rn 47350 |
| Copyright terms: Public domain | W3C validator |