![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version |
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotaex | ⊢ (℩𝑥𝜑) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6200 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
2 | 1 | eqcomd 2801 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
3 | 2 | eximi 1816 | . . 3 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑)) |
4 | eu6 2617 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
5 | isset 3449 | . . 3 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑)) | |
6 | 3, 4, 5 | 3imtr4i 293 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
7 | iotanul 6204 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
8 | 0ex 5102 | . . 3 ⊢ ∅ ∈ V | |
9 | 7, 8 | syl6eqel 2891 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
10 | 6, 9 | pm2.61i 183 | 1 ⊢ (℩𝑥𝜑) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∀wal 1520 = wceq 1522 ∃wex 1761 ∈ wcel 2081 ∃!weu 2611 Vcvv 3437 ∅c0 4211 ℩cio 6187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-nul 5101 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-sn 4473 df-pr 4475 df-uni 4746 df-iota 6189 |
This theorem is referenced by: iota4an 6208 fvex 6551 riotaex 6981 erov 8244 iunfictbso 9386 isf32lem9 9629 sumex 14878 prodex 15094 pcval 16010 grpidval 17699 fn0g 17701 gsumvalx 17709 psgnfn 18360 psgnval 18366 dchrptlem1 25522 lgsdchrval 25612 lgsdchr 25613 bnj1366 31718 nosupno 32812 nosupdm 32813 nosupbday 32814 nosupfv 32815 nosupres 32816 nosupbnd1lem1 32817 bj-finsumval0 34119 ellimciota 41437 fourierdlem36 41970 eubrdm 42787 dfatafv2ex 42928 afv2ex 42929 funressndmafv2rn 42938 |
Copyright terms: Public domain | W3C validator |