| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version | ||
| Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaex | ⊢ (℩𝑥𝜑) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6479 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | vex 3451 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | eqeltrdi 2836 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 5 | iotanul2 6481 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 6 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | eqeltrdi 2836 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 Vcvv 3447 ∅c0 4296 {csn 4589 ℩cio 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 |
| This theorem is referenced by: iota4an 6493 fvex 6871 riotaex 7348 erov 8787 iunfictbso 10067 isf32lem9 10314 sumex 15654 prodex 15871 pcval 16815 grpidval 18588 fn0g 18590 gsumvalx 18603 psgnfn 19431 psgnval 19437 dchrptlem1 27175 lgsdchrval 27265 lgsdchr 27266 nosupno 27615 nosupdm 27616 nosupbday 27617 nosupfv 27618 nosupres 27619 nosupbnd1lem1 27620 noinfno 27630 noinfdm 27631 noinffv 27633 bnj1366 34819 bj-finsumval0 37273 ellimciota 45612 fourierdlem36 46141 eubrdm 47034 dfatafv2ex 47211 afv2ex 47212 funressndmafv2rn 47221 |
| Copyright terms: Public domain | W3C validator |