![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version |
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2138, ax-11 2155, ax-12 2172. (Revised by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotaex | ⊢ (℩𝑥𝜑) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval2 6512 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | vex 3479 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | eqeltrdi 2842 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
4 | 3 | exlimiv 1934 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
5 | iotanul2 6514 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
6 | 0ex 5308 | . . 3 ⊢ ∅ ∈ V | |
7 | 5, 6 | eqeltrdi 2842 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 Vcvv 3475 ∅c0 4323 {csn 4629 ℩cio 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 |
This theorem is referenced by: iota4an 6526 fvex 6905 riotaex 7369 erov 8808 iunfictbso 10109 isf32lem9 10356 sumex 15634 prodex 15851 pcval 16777 grpidval 18580 fn0g 18582 gsumvalx 18595 psgnfn 19369 psgnval 19375 dchrptlem1 26767 lgsdchrval 26857 lgsdchr 26858 nosupno 27206 nosupdm 27207 nosupbday 27208 nosupfv 27209 nosupres 27210 nosupbnd1lem1 27211 noinfno 27221 noinfdm 27222 noinffv 27224 bnj1366 33840 bj-finsumval0 36166 ellimciota 44330 fourierdlem36 44859 eubrdm 45746 dfatafv2ex 45921 afv2ex 45922 funressndmafv2rn 45931 |
Copyright terms: Public domain | W3C validator |