| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaex | Structured version Visualization version GIF version | ||
| Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaex | ⊢ (℩𝑥𝜑) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6504 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | vex 3468 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | eqeltrdi 2843 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 5 | iotanul2 6506 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 6 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | eqeltrdi 2843 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ∈ V) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 Vcvv 3464 ∅c0 4313 {csn 4606 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: iota4an 6518 fvex 6894 riotaex 7371 erov 8833 iunfictbso 10133 isf32lem9 10380 sumex 15709 prodex 15926 pcval 16869 grpidval 18644 fn0g 18646 gsumvalx 18659 psgnfn 19487 psgnval 19493 dchrptlem1 27232 lgsdchrval 27322 lgsdchr 27323 nosupno 27672 nosupdm 27673 nosupbday 27674 nosupfv 27675 nosupres 27676 nosupbnd1lem1 27677 noinfno 27687 noinfdm 27688 noinffv 27690 bnj1366 34865 bj-finsumval0 37308 ellimciota 45610 fourierdlem36 46139 eubrdm 47032 dfatafv2ex 47209 afv2ex 47210 funressndmafv2rn 47219 |
| Copyright terms: Public domain | W3C validator |