MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaex Structured version   Visualization version   GIF version

Theorem iotaex 6413
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaex (℩𝑥𝜑) ∈ V

Proof of Theorem iotaex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6407 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
21eqcomd 2744 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
32eximi 1837 . . 3 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → ∃𝑧 𝑧 = (℩𝑥𝜑))
4 eu6 2574 . . 3 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
5 isset 3445 . . 3 ((℩𝑥𝜑) ∈ V ↔ ∃𝑧 𝑧 = (℩𝑥𝜑))
63, 4, 53imtr4i 292 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
7 iotanul 6411 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
8 0ex 5231 . . 3 ∅ ∈ V
97, 8eqeltrdi 2847 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
106, 9pm2.61i 182 1 (℩𝑥𝜑) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  Vcvv 3432  c0 4256  cio 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391
This theorem is referenced by:  iota4an  6415  fvex  6787  riotaex  7236  erov  8603  iunfictbso  9870  isf32lem9  10117  sumex  15399  prodex  15617  pcval  16545  grpidval  18345  fn0g  18347  gsumvalx  18360  psgnfn  19109  psgnval  19115  dchrptlem1  26412  lgsdchrval  26502  lgsdchr  26503  bnj1366  32809  nosupno  33906  nosupdm  33907  nosupbday  33908  nosupfv  33909  nosupres  33910  nosupbnd1lem1  33911  noinfno  33921  noinfdm  33922  noinffv  33924  bj-finsumval0  35456  ellimciota  43155  fourierdlem36  43684  eubrdm  44530  dfatafv2ex  44705  afv2ex  44706  funressndmafv2rn  44715
  Copyright terms: Public domain W3C validator