Step | Hyp | Ref
| Expression |
1 | | ssun1 4102 |
. . . 4
⊢ 𝐵 ⊆ (𝐵 ∪ {∅}) |
2 | | undif1 4406 |
. . . 4
⊢ ((𝐵 ∖ {∅}) ∪
{∅}) = (𝐵 ∪
{∅}) |
3 | 1, 2 | sseqtrri 3954 |
. . 3
⊢ 𝐵 ⊆ ((𝐵 ∖ {∅}) ∪
{∅}) |
4 | | snex 5349 |
. . . 4
⊢ {∅}
∈ V |
5 | | unexg 7577 |
. . . 4
⊢ (((𝐵 ∖ {∅}) ∈
TopBases ∧ {∅} ∈ V) → ((𝐵 ∖ {∅}) ∪ {∅}) ∈
V) |
6 | 4, 5 | mpan2 687 |
. . 3
⊢ ((𝐵 ∖ {∅}) ∈
TopBases → ((𝐵 ∖
{∅}) ∪ {∅}) ∈ V) |
7 | | ssexg 5242 |
. . 3
⊢ ((𝐵 ⊆ ((𝐵 ∖ {∅}) ∪ {∅}) ∧
((𝐵 ∖ {∅})
∪ {∅}) ∈ V) → 𝐵 ∈ V) |
8 | 3, 6, 7 | sylancr 586 |
. 2
⊢ ((𝐵 ∖ {∅}) ∈
TopBases → 𝐵 ∈
V) |
9 | | elex 3440 |
. 2
⊢ (𝐵 ∈ TopBases → 𝐵 ∈ V) |
10 | | indif1 4202 |
. . . . . . . . . . 11
⊢ ((𝐵 ∖ {∅}) ∩
𝒫 (𝑥 ∩ 𝑦)) = ((𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ∖ {∅}) |
11 | 10 | unieqi 4849 |
. . . . . . . . . 10
⊢ ∪ ((𝐵
∖ {∅}) ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ ((𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ∖ {∅}) |
12 | | unidif0 5277 |
. . . . . . . . . 10
⊢ ∪ ((𝐵
∩ 𝒫 (𝑥 ∩
𝑦)) ∖ {∅}) =
∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) |
13 | 11, 12 | eqtri 2766 |
. . . . . . . . 9
⊢ ∪ ((𝐵
∖ {∅}) ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) |
14 | 13 | sseq2i 3946 |
. . . . . . . 8
⊢ ((𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
15 | 14 | ralbii 3090 |
. . . . . . 7
⊢
(∀𝑦 ∈
(𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
16 | | inss2 4160 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑦 |
17 | | elinel2 4126 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 ∈ {∅}) |
18 | | elsni 4575 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 = ∅) |
20 | | 0ss 4327 |
. . . . . . . . . . 11
⊢ ∅
⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) |
21 | 19, 20 | eqsstrdi 3971 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
22 | 16, 21 | sstrid 3928 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∩ {∅}) → (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
23 | 22 | rgen 3073 |
. . . . . . . 8
⊢
∀𝑦 ∈
(𝐵 ∩ {∅})(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) |
24 | | ralunb 4121 |
. . . . . . . 8
⊢
(∀𝑦 ∈
((𝐵 ∩ {∅}) ∪
(𝐵 ∖
{∅}))(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ (∀𝑦 ∈ (𝐵 ∩ {∅})(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ∧ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
25 | 23, 24 | mpbiran 705 |
. . . . . . 7
⊢
(∀𝑦 ∈
((𝐵 ∩ {∅}) ∪
(𝐵 ∖
{∅}))(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
26 | | inundif 4409 |
. . . . . . . 8
⊢ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅})) = 𝐵 |
27 | 26 | raleqi 3337 |
. . . . . . 7
⊢
(∀𝑦 ∈
((𝐵 ∩ {∅}) ∪
(𝐵 ∖
{∅}))(𝑥 ∩ 𝑦) ⊆ ∪ (𝐵
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
28 | 15, 25, 27 | 3bitr2i 298 |
. . . . . 6
⊢
(∀𝑦 ∈
(𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
29 | 28 | ralbii 3090 |
. . . . 5
⊢
(∀𝑥 ∈
(𝐵 ∖
{∅})∀𝑦 ∈
(𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
30 | | inss1 4159 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 |
31 | | elinel2 4126 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 ∈ {∅}) |
32 | | elsni 4575 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 = ∅) |
34 | 33, 20 | eqsstrdi 3971 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
35 | 30, 34 | sstrid 3928 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∩ {∅}) → (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
36 | 35 | ralrimivw 3108 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∩ {∅}) → ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
37 | 36 | rgen 3073 |
. . . . . 6
⊢
∀𝑥 ∈
(𝐵 ∩
{∅})∀𝑦 ∈
𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) |
38 | | ralunb 4121 |
. . . . . 6
⊢
(∀𝑥 ∈
((𝐵 ∩ {∅}) ∪
(𝐵 ∖
{∅}))∀𝑦 ∈
𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (∀𝑥 ∈ (𝐵 ∩ {∅})∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ∧ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
39 | 37, 38 | mpbiran 705 |
. . . . 5
⊢
(∀𝑥 ∈
((𝐵 ∩ {∅}) ∪
(𝐵 ∖
{∅}))∀𝑦 ∈
𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
40 | 26 | raleqi 3337 |
. . . . 5
⊢
(∀𝑥 ∈
((𝐵 ∩ {∅}) ∪
(𝐵 ∖
{∅}))∀𝑦 ∈
𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
41 | 29, 39, 40 | 3bitr2i 298 |
. . . 4
⊢
(∀𝑥 ∈
(𝐵 ∖
{∅})∀𝑦 ∈
(𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
42 | 41 | a1i 11 |
. . 3
⊢ (𝐵 ∈ V → (∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
43 | | difexg 5246 |
. . . 4
⊢ (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈
V) |
44 | | isbasisg 22005 |
. . . 4
⊢ ((𝐵 ∖ {∅}) ∈ V
→ ((𝐵 ∖
{∅}) ∈ TopBases ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)))) |
45 | 43, 44 | syl 17 |
. . 3
⊢ (𝐵 ∈ V → ((𝐵 ∖ {∅}) ∈
TopBases ↔ ∀𝑥
∈ (𝐵 ∖
{∅})∀𝑦 ∈
(𝐵 ∖ {∅})(𝑥 ∩ 𝑦) ⊆ ∪
((𝐵 ∖ {∅})
∩ 𝒫 (𝑥 ∩
𝑦)))) |
46 | | isbasisg 22005 |
. . 3
⊢ (𝐵 ∈ V → (𝐵 ∈ TopBases ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
47 | 42, 45, 46 | 3bitr4d 310 |
. 2
⊢ (𝐵 ∈ V → ((𝐵 ∖ {∅}) ∈
TopBases ↔ 𝐵 ∈
TopBases)) |
48 | 8, 9, 47 | pm5.21nii 379 |
1
⊢ ((𝐵 ∖ {∅}) ∈
TopBases ↔ 𝐵 ∈
TopBases) |