MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basdif0 Structured version   Visualization version   GIF version

Theorem basdif0 21249
Description: A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
basdif0 ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases)

Proof of Theorem basdif0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4075 . . . 4 𝐵 ⊆ (𝐵 ∪ {∅})
2 undif1 4344 . . . 4 ((𝐵 ∖ {∅}) ∪ {∅}) = (𝐵 ∪ {∅})
31, 2sseqtr4i 3931 . . 3 𝐵 ⊆ ((𝐵 ∖ {∅}) ∪ {∅})
4 snex 5230 . . . 4 {∅} ∈ V
5 unexg 7336 . . . 4 (((𝐵 ∖ {∅}) ∈ TopBases ∧ {∅} ∈ V) → ((𝐵 ∖ {∅}) ∪ {∅}) ∈ V)
64, 5mpan2 687 . . 3 ((𝐵 ∖ {∅}) ∈ TopBases → ((𝐵 ∖ {∅}) ∪ {∅}) ∈ V)
7 ssexg 5125 . . 3 ((𝐵 ⊆ ((𝐵 ∖ {∅}) ∪ {∅}) ∧ ((𝐵 ∖ {∅}) ∪ {∅}) ∈ V) → 𝐵 ∈ V)
83, 6, 7sylancr 587 . 2 ((𝐵 ∖ {∅}) ∈ TopBases → 𝐵 ∈ V)
9 elex 3458 . 2 (𝐵 ∈ TopBases → 𝐵 ∈ V)
10 indif1 4174 . . . . . . . . . . 11 ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) = ((𝐵 ∩ 𝒫 (𝑥𝑦)) ∖ {∅})
1110unieqi 4760 . . . . . . . . . 10 ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) = ((𝐵 ∩ 𝒫 (𝑥𝑦)) ∖ {∅})
12 unidif0 5158 . . . . . . . . . 10 ((𝐵 ∩ 𝒫 (𝑥𝑦)) ∖ {∅}) = (𝐵 ∩ 𝒫 (𝑥𝑦))
1311, 12eqtri 2821 . . . . . . . . 9 ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦))
1413sseq2i 3923 . . . . . . . 8 ((𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
1514ralbii 3134 . . . . . . 7 (∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
16 inss2 4132 . . . . . . . . . 10 (𝑥𝑦) ⊆ 𝑦
17 elinel2 4100 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 ∈ {∅})
18 elsni 4495 . . . . . . . . . . . 12 (𝑦 ∈ {∅} → 𝑦 = ∅)
1917, 18syl 17 . . . . . . . . . . 11 (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 = ∅)
20 0ss 4276 . . . . . . . . . . 11 ∅ ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))
2119, 20syl6eqss 3948 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 (𝐵 ∩ 𝒫 (𝑥𝑦)))
2216, 21sstrid 3906 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∩ {∅}) → (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
2322rgen 3117 . . . . . . . 8 𝑦 ∈ (𝐵 ∩ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))
24 ralunb 4094 . . . . . . . 8 (∀𝑦 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (∀𝑦 ∈ (𝐵 ∩ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ∧ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
2523, 24mpbiran 705 . . . . . . 7 (∀𝑦 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
26 inundif 4347 . . . . . . . 8 ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅})) = 𝐵
2726raleqi 3375 . . . . . . 7 (∀𝑦 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
2815, 25, 273bitr2i 300 . . . . . 6 (∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
2928ralbii 3134 . . . . 5 (∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
30 inss1 4131 . . . . . . . . 9 (𝑥𝑦) ⊆ 𝑥
31 elinel2 4100 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 ∈ {∅})
32 elsni 4495 . . . . . . . . . . 11 (𝑥 ∈ {∅} → 𝑥 = ∅)
3331, 32syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 = ∅)
3433, 20syl6eqss 3948 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 (𝐵 ∩ 𝒫 (𝑥𝑦)))
3530, 34sstrid 3906 . . . . . . . 8 (𝑥 ∈ (𝐵 ∩ {∅}) → (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
3635ralrimivw 3152 . . . . . . 7 (𝑥 ∈ (𝐵 ∩ {∅}) → ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
3736rgen 3117 . . . . . 6 𝑥 ∈ (𝐵 ∩ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))
38 ralunb 4094 . . . . . 6 (∀𝑥 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (∀𝑥 ∈ (𝐵 ∩ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ∧ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
3937, 38mpbiran 705 . . . . 5 (∀𝑥 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
4026raleqi 3375 . . . . 5 (∀𝑥 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
4129, 39, 403bitr2i 300 . . . 4 (∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
4241a1i 11 . . 3 (𝐵 ∈ V → (∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
43 difexg 5129 . . . 4 (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V)
44 isbasisg 21243 . . . 4 ((𝐵 ∖ {∅}) ∈ V → ((𝐵 ∖ {∅}) ∈ TopBases ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦))))
4543, 44syl 17 . . 3 (𝐵 ∈ V → ((𝐵 ∖ {∅}) ∈ TopBases ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦))))
46 isbasisg 21243 . . 3 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
4742, 45, 463bitr4d 312 . 2 (𝐵 ∈ V → ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases))
488, 9, 47pm5.21nii 380 1 ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wb 207   = wceq 1525  wcel 2083  wral 3107  Vcvv 3440  cdif 3862  cun 3863  cin 3864  wss 3865  c0 4217  𝒫 cpw 4459  {csn 4478   cuni 4751  TopBasesctb 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-sn 4479  df-pr 4481  df-uni 4752  df-bases 21242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator