MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  baspartn Structured version   Visualization version   GIF version

Theorem baspartn 21478
Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
baspartn ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
Distinct variable group:   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem baspartn
StepHypRef Expression
1 id 22 . . . . . . . . 9 (𝑥𝑃𝑥𝑃)
2 pwidg 4558 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ 𝒫 𝑥)
31, 2elind 4174 . . . . . . . 8 (𝑥𝑃𝑥 ∈ (𝑃 ∩ 𝒫 𝑥))
4 elssuni 4865 . . . . . . . 8 (𝑥 ∈ (𝑃 ∩ 𝒫 𝑥) → 𝑥 (𝑃 ∩ 𝒫 𝑥))
53, 4syl 17 . . . . . . 7 (𝑥𝑃𝑥 (𝑃 ∩ 𝒫 𝑥))
6 inidm 4198 . . . . . . . . 9 (𝑥𝑥) = 𝑥
7 ineq2 4186 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥) = (𝑥𝑦))
86, 7syl5eqr 2874 . . . . . . . 8 (𝑥 = 𝑦𝑥 = (𝑥𝑦))
98pweqd 4546 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 (𝑥𝑦))
109ineq2d 4192 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
1110unieqd 4846 . . . . . . . 8 (𝑥 = 𝑦 (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
128, 11sseq12d 4003 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝑃 ∩ 𝒫 𝑥) ↔ (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
135, 12syl5ibcom 246 . . . . . 6 (𝑥𝑃 → (𝑥 = 𝑦 → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
14 0ss 4353 . . . . . . . 8 ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))
15 sseq1 3995 . . . . . . . 8 ((𝑥𝑦) = ∅ → ((𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)) ↔ ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1614, 15mpbiri 259 . . . . . . 7 ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
1716a1i 11 . . . . . 6 (𝑥𝑃 → ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1813, 17jaod 855 . . . . 5 (𝑥𝑃 → ((𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1918ralimdv 3182 . . . 4 (𝑥𝑃 → (∀𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2019ralimia 3162 . . 3 (∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
2120adantl 482 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
22 isbasisg 21471 . . 3 (𝑃𝑉 → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2322adantr 481 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2421, 23mpbird 258 1 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2107  wral 3142  cin 3938  wss 3939  c0 4294  𝒫 cpw 4541   cuni 4836  TopBasesctb 21469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-dif 3942  df-in 3946  df-ss 3955  df-nul 4295  df-pw 4543  df-uni 4837  df-bases 21470
This theorem is referenced by:  kelac2lem  39525
  Copyright terms: Public domain W3C validator