MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basqtop Structured version   Visualization version   GIF version

Theorem basqtop 21736
Description: An injection maps bases to bases. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
basqtop ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)

Proof of Theorem basqtop
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofo 6286 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
2 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
32elqtop2 21726 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
42elqtop2 21726 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
53, 4anbi12d 610 . . . . 5 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
61, 5sylan2 574 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
7 simpl1l 1278 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐽 ∈ TopBases)
8 simpl2r 1284 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑥) ∈ 𝐽)
9 simpl3r 1288 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑦) ∈ 𝐽)
10 simpl1r 1280 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹:𝑋1-1-onto𝑌)
11 f1ocnv 6291 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
12 f1ofn 6280 . . . . . . . . . . . 12 (𝐹:𝑌1-1-onto𝑋𝐹 Fn 𝑌)
1310, 11, 123syl 18 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹 Fn 𝑌)
14 simpl2l 1282 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑥𝑌)
15 inss1 3982 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑥
16 simpr 471 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ∈ (𝑥𝑦))
1715, 16sseldi 3751 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑥)
18 fnfvima 6640 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑥𝑌𝑧𝑥) → (𝐹𝑧) ∈ (𝐹𝑥))
1913, 14, 17, 18syl3anc 1476 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑥))
20 simpl3l 1286 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑦𝑌)
21 inss2 3983 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑦
2221, 16sseldi 3751 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
23 fnfvima 6640 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑦𝑌𝑧𝑦) → (𝐹𝑧) ∈ (𝐹𝑦))
2413, 20, 22, 23syl3anc 1476 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑦))
2519, 24elind 3950 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))
26 basis2 20977 . . . . . . . . 9 (((𝐽 ∈ TopBases ∧ (𝐹𝑥) ∈ 𝐽) ∧ ((𝐹𝑦) ∈ 𝐽 ∧ (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
277, 8, 9, 25, 26syl22anc 1477 . . . . . . . 8 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
2810adantr 466 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1-onto𝑌)
29 simp2l 1241 . . . . . . . . . . . . . 14 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑥𝑌)
3015, 29syl5ss 3764 . . . . . . . . . . . . 13 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ 𝑌)
3130sselda 3753 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑌)
3231adantr 466 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧𝑌)
33 f1ocnvfv2 6677 . . . . . . . . . . 11 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
3428, 32, 33syl2anc 567 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) = 𝑧)
35 f1ofn 6280 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹 Fn 𝑋)
3628, 35syl 17 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹 Fn 𝑋)
37 simprrr 761 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦)))
38 inss1 3982 . . . . . . . . . . . . 13 ((𝐹𝑥) ∩ (𝐹𝑦)) ⊆ (𝐹𝑥)
3937, 38syl6ss 3765 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹𝑥))
40 cnvimass 5627 . . . . . . . . . . . . 13 (𝐹𝑥) ⊆ dom 𝐹
41 f1odm 6283 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌 → dom 𝐹 = 𝑋)
4228, 41syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → dom 𝐹 = 𝑋)
4340, 42syl5sseq 3803 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑥) ⊆ 𝑋)
4439, 43sstrd 3763 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝑋)
45 simprrl 760 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑧) ∈ 𝑤)
46 fnfvima 6640 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑤𝑋 ∧ (𝐹𝑧) ∈ 𝑤) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4736, 44, 45, 46syl3anc 1476 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4834, 47eqeltrrd 2851 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ∈ (𝐹𝑤))
49 imassrn 5619 . . . . . . . . . . . 12 (𝐹𝑤) ⊆ ran 𝐹
5028, 1syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋onto𝑌)
51 forn 6260 . . . . . . . . . . . . 13 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
5250, 51syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ran 𝐹 = 𝑌)
5349, 52syl5sseq 3803 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ 𝑌)
54 f1of1 6278 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
5528, 54syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1𝑌)
56 f1imacnv 6295 . . . . . . . . . . . . 13 ((𝐹:𝑋1-1𝑌𝑤𝑋) → (𝐹 “ (𝐹𝑤)) = 𝑤)
5755, 44, 56syl2anc 567 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) = 𝑤)
58 simprl 748 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝐽)
5957, 58eqeltrd 2850 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) ∈ 𝐽)
607adantr 466 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐽 ∈ TopBases)
612elqtop2 21726 . . . . . . . . . . . 12 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6260, 50, 61syl2anc 567 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6353, 59, 62mpbir2and 686 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ (𝐽 qTop 𝐹))
64 fnfun 6129 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → Fun 𝐹)
65 inpreima 6486 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6636, 64, 653syl 18 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6737, 66sseqtr4d 3792 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹 “ (𝑥𝑦)))
6836, 64syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → Fun 𝐹)
6939, 40syl6ss 3765 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ dom 𝐹)
70 funimass3 6477 . . . . . . . . . . . . 13 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7168, 69, 70syl2anc 567 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7267, 71mpbird 247 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ (𝑥𝑦))
73 vex 3354 . . . . . . . . . . . . 13 𝑥 ∈ V
7473inex1 4934 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
7574elpw2 4960 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝒫 (𝑥𝑦) ↔ (𝐹𝑤) ⊆ (𝑥𝑦))
7672, 75sylibr 224 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ 𝒫 (𝑥𝑦))
7763, 76elind 3950 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
78 elunii 4580 . . . . . . . . 9 ((𝑧 ∈ (𝐹𝑤) ∧ (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
7948, 77, 78syl2anc 567 . . . . . . . 8 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8027, 79rexlimddv 3183 . . . . . . 7 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8180ex 397 . . . . . 6 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑧 ∈ (𝑥𝑦) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8281ssrdv 3759 . . . . 5 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
83823expib 1116 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
846, 83sylbid 230 . . 3 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8584ralrimivv 3119 . 2 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
86 ovex 6824 . . 3 (𝐽 qTop 𝐹) ∈ V
87 isbasisg 20973 . . 3 ((𝐽 qTop 𝐹) ∈ V → ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8886, 87ax-mp 5 . 2 ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8985, 88sylibr 224 1 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  cin 3723  wss 3724  𝒫 cpw 4298   cuni 4575  ccnv 5249  dom cdm 5250  ran crn 5251  cima 5253  Fun wfun 6026   Fn wfn 6027  1-1wf1 6029  ontowfo 6030  1-1-ontowf1o 6031  cfv 6032  (class class class)co 6794   qTop cqtop 16372  TopBasesctb 20971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-qtop 16376  df-bases 20972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator