MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basqtop Structured version   Visualization version   GIF version

Theorem basqtop 23740
Description: An injection maps bases to bases. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
basqtop ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)

Proof of Theorem basqtop
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofo 6869 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
2 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
32elqtop2 23730 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
42elqtop2 23730 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
53, 4anbi12d 631 . . . . 5 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
61, 5sylan2 592 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
7 simpl1l 1224 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐽 ∈ TopBases)
8 simpl2r 1227 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑥) ∈ 𝐽)
9 simpl3r 1229 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑦) ∈ 𝐽)
10 simpl1r 1225 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹:𝑋1-1-onto𝑌)
11 f1ocnv 6874 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
12 f1ofn 6863 . . . . . . . . . . . 12 (𝐹:𝑌1-1-onto𝑋𝐹 Fn 𝑌)
1310, 11, 123syl 18 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹 Fn 𝑌)
14 simpl2l 1226 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑥𝑌)
15 simpr 484 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ∈ (𝑥𝑦))
1615elin1d 4227 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑥)
17 fnfvima 7270 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑥𝑌𝑧𝑥) → (𝐹𝑧) ∈ (𝐹𝑥))
1813, 14, 16, 17syl3anc 1371 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑥))
19 simpl3l 1228 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑦𝑌)
2015elin2d 4228 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
21 fnfvima 7270 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑦𝑌𝑧𝑦) → (𝐹𝑧) ∈ (𝐹𝑦))
2213, 19, 20, 21syl3anc 1371 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑦))
2318, 22elind 4223 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))
24 basis2 22979 . . . . . . . . 9 (((𝐽 ∈ TopBases ∧ (𝐹𝑥) ∈ 𝐽) ∧ ((𝐹𝑦) ∈ 𝐽 ∧ (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
257, 8, 9, 23, 24syl22anc 838 . . . . . . . 8 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
2610adantr 480 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1-onto𝑌)
27 inss1 4258 . . . . . . . . . . . . . 14 (𝑥𝑦) ⊆ 𝑥
28 simp2l 1199 . . . . . . . . . . . . . 14 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑥𝑌)
2927, 28sstrid 4020 . . . . . . . . . . . . 13 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ 𝑌)
3029sselda 4008 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑌)
3130adantr 480 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧𝑌)
32 f1ocnvfv2 7313 . . . . . . . . . . 11 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
3326, 31, 32syl2anc 583 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) = 𝑧)
34 f1ofn 6863 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹 Fn 𝑋)
3526, 34syl 17 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹 Fn 𝑋)
36 simprrr 781 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦)))
37 inss1 4258 . . . . . . . . . . . . 13 ((𝐹𝑥) ∩ (𝐹𝑦)) ⊆ (𝐹𝑥)
3836, 37sstrdi 4021 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹𝑥))
39 cnvimass 6111 . . . . . . . . . . . . 13 (𝐹𝑥) ⊆ dom 𝐹
40 f1odm 6866 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌 → dom 𝐹 = 𝑋)
4126, 40syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → dom 𝐹 = 𝑋)
4239, 41sseqtrid 4061 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑥) ⊆ 𝑋)
4338, 42sstrd 4019 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝑋)
44 simprrl 780 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑧) ∈ 𝑤)
45 fnfvima 7270 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑤𝑋 ∧ (𝐹𝑧) ∈ 𝑤) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4635, 43, 44, 45syl3anc 1371 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4733, 46eqeltrrd 2845 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ∈ (𝐹𝑤))
48 imassrn 6100 . . . . . . . . . . . 12 (𝐹𝑤) ⊆ ran 𝐹
4926, 1syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋onto𝑌)
50 forn 6837 . . . . . . . . . . . . 13 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
5149, 50syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ran 𝐹 = 𝑌)
5248, 51sseqtrid 4061 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ 𝑌)
53 f1of1 6861 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
5426, 53syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1𝑌)
55 f1imacnv 6878 . . . . . . . . . . . . 13 ((𝐹:𝑋1-1𝑌𝑤𝑋) → (𝐹 “ (𝐹𝑤)) = 𝑤)
5654, 43, 55syl2anc 583 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) = 𝑤)
57 simprl 770 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝐽)
5856, 57eqeltrd 2844 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) ∈ 𝐽)
597adantr 480 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐽 ∈ TopBases)
602elqtop2 23730 . . . . . . . . . . . 12 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6159, 49, 60syl2anc 583 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6252, 58, 61mpbir2and 712 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ (𝐽 qTop 𝐹))
63 fnfun 6679 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → Fun 𝐹)
64 inpreima 7097 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6535, 63, 643syl 18 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6636, 65sseqtrrd 4050 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹 “ (𝑥𝑦)))
6735, 63syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → Fun 𝐹)
6838, 39sstrdi 4021 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ dom 𝐹)
69 funimass3 7087 . . . . . . . . . . . . 13 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7067, 68, 69syl2anc 583 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7166, 70mpbird 257 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ (𝑥𝑦))
72 vex 3492 . . . . . . . . . . . . 13 𝑥 ∈ V
7372inex1 5335 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
7473elpw2 5352 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝒫 (𝑥𝑦) ↔ (𝐹𝑤) ⊆ (𝑥𝑦))
7571, 74sylibr 234 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ 𝒫 (𝑥𝑦))
7662, 75elind 4223 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
77 elunii 4936 . . . . . . . . 9 ((𝑧 ∈ (𝐹𝑤) ∧ (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
7847, 76, 77syl2anc 583 . . . . . . . 8 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
7925, 78rexlimddv 3167 . . . . . . 7 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8079ex 412 . . . . . 6 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑧 ∈ (𝑥𝑦) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8180ssrdv 4014 . . . . 5 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
82813expib 1122 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
836, 82sylbid 240 . . 3 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8483ralrimivv 3206 . 2 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
85 ovex 7481 . . 3 (𝐽 qTop 𝐹) ∈ V
86 isbasisg 22975 . . 3 ((𝐽 qTop 𝐹) ∈ V → ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8785, 86ax-mp 5 . 2 ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8884, 87sylibr 234 1 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448   qTop cqtop 17563  TopBasesctb 22973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-qtop 17567  df-bases 22974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator