MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basqtop Structured version   Visualization version   GIF version

Theorem basqtop 23065
Description: An injection maps bases to bases. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
basqtop ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)

Proof of Theorem basqtop
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofo 6792 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
2 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
32elqtop2 23055 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
42elqtop2 23055 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
53, 4anbi12d 632 . . . . 5 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
61, 5sylan2 594 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
7 simpl1l 1225 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐽 ∈ TopBases)
8 simpl2r 1228 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑥) ∈ 𝐽)
9 simpl3r 1230 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑦) ∈ 𝐽)
10 simpl1r 1226 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹:𝑋1-1-onto𝑌)
11 f1ocnv 6797 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
12 f1ofn 6786 . . . . . . . . . . . 12 (𝐹:𝑌1-1-onto𝑋𝐹 Fn 𝑌)
1310, 11, 123syl 18 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹 Fn 𝑌)
14 simpl2l 1227 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑥𝑌)
15 simpr 486 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ∈ (𝑥𝑦))
1615elin1d 4159 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑥)
17 fnfvima 7184 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑥𝑌𝑧𝑥) → (𝐹𝑧) ∈ (𝐹𝑥))
1813, 14, 16, 17syl3anc 1372 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑥))
19 simpl3l 1229 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑦𝑌)
2015elin2d 4160 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
21 fnfvima 7184 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑦𝑌𝑧𝑦) → (𝐹𝑧) ∈ (𝐹𝑦))
2213, 19, 20, 21syl3anc 1372 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑦))
2318, 22elind 4155 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))
24 basis2 22304 . . . . . . . . 9 (((𝐽 ∈ TopBases ∧ (𝐹𝑥) ∈ 𝐽) ∧ ((𝐹𝑦) ∈ 𝐽 ∧ (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
257, 8, 9, 23, 24syl22anc 838 . . . . . . . 8 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
2610adantr 482 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1-onto𝑌)
27 inss1 4189 . . . . . . . . . . . . . 14 (𝑥𝑦) ⊆ 𝑥
28 simp2l 1200 . . . . . . . . . . . . . 14 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑥𝑌)
2927, 28sstrid 3956 . . . . . . . . . . . . 13 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ 𝑌)
3029sselda 3945 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑌)
3130adantr 482 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧𝑌)
32 f1ocnvfv2 7224 . . . . . . . . . . 11 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
3326, 31, 32syl2anc 585 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) = 𝑧)
34 f1ofn 6786 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹 Fn 𝑋)
3526, 34syl 17 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹 Fn 𝑋)
36 simprrr 781 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦)))
37 inss1 4189 . . . . . . . . . . . . 13 ((𝐹𝑥) ∩ (𝐹𝑦)) ⊆ (𝐹𝑥)
3836, 37sstrdi 3957 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹𝑥))
39 cnvimass 6034 . . . . . . . . . . . . 13 (𝐹𝑥) ⊆ dom 𝐹
40 f1odm 6789 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌 → dom 𝐹 = 𝑋)
4126, 40syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → dom 𝐹 = 𝑋)
4239, 41sseqtrid 3997 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑥) ⊆ 𝑋)
4338, 42sstrd 3955 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝑋)
44 simprrl 780 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑧) ∈ 𝑤)
45 fnfvima 7184 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑤𝑋 ∧ (𝐹𝑧) ∈ 𝑤) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4635, 43, 44, 45syl3anc 1372 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4733, 46eqeltrrd 2839 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ∈ (𝐹𝑤))
48 imassrn 6025 . . . . . . . . . . . 12 (𝐹𝑤) ⊆ ran 𝐹
4926, 1syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋onto𝑌)
50 forn 6760 . . . . . . . . . . . . 13 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
5149, 50syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ran 𝐹 = 𝑌)
5248, 51sseqtrid 3997 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ 𝑌)
53 f1of1 6784 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
5426, 53syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1𝑌)
55 f1imacnv 6801 . . . . . . . . . . . . 13 ((𝐹:𝑋1-1𝑌𝑤𝑋) → (𝐹 “ (𝐹𝑤)) = 𝑤)
5654, 43, 55syl2anc 585 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) = 𝑤)
57 simprl 770 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝐽)
5856, 57eqeltrd 2838 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) ∈ 𝐽)
597adantr 482 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐽 ∈ TopBases)
602elqtop2 23055 . . . . . . . . . . . 12 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6159, 49, 60syl2anc 585 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6252, 58, 61mpbir2and 712 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ (𝐽 qTop 𝐹))
63 fnfun 6603 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → Fun 𝐹)
64 inpreima 7015 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6535, 63, 643syl 18 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6636, 65sseqtrrd 3986 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹 “ (𝑥𝑦)))
6735, 63syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → Fun 𝐹)
6838, 39sstrdi 3957 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ dom 𝐹)
69 funimass3 7005 . . . . . . . . . . . . 13 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7067, 68, 69syl2anc 585 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7166, 70mpbird 257 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ (𝑥𝑦))
72 vex 3450 . . . . . . . . . . . . 13 𝑥 ∈ V
7372inex1 5275 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
7473elpw2 5303 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝒫 (𝑥𝑦) ↔ (𝐹𝑤) ⊆ (𝑥𝑦))
7571, 74sylibr 233 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ 𝒫 (𝑥𝑦))
7662, 75elind 4155 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
77 elunii 4871 . . . . . . . . 9 ((𝑧 ∈ (𝐹𝑤) ∧ (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
7847, 76, 77syl2anc 585 . . . . . . . 8 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
7925, 78rexlimddv 3159 . . . . . . 7 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8079ex 414 . . . . . 6 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑧 ∈ (𝑥𝑦) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8180ssrdv 3951 . . . . 5 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
82813expib 1123 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
836, 82sylbid 239 . . 3 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8483ralrimivv 3196 . 2 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
85 ovex 7391 . . 3 (𝐽 qTop 𝐹) ∈ V
86 isbasisg 22300 . . 3 ((𝐽 qTop 𝐹) ∈ V → ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8785, 86ax-mp 5 . 2 ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8884, 87sylibr 233 1 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  wrex 3074  Vcvv 3446  cin 3910  wss 3911  𝒫 cpw 4561   cuni 4866  ccnv 5633  dom cdm 5634  ran crn 5635  cima 5637  Fun wfun 6491   Fn wfn 6492  1-1wf1 6494  ontowfo 6495  1-1-ontowf1o 6496  cfv 6497  (class class class)co 7358   qTop cqtop 17386  TopBasesctb 22298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-qtop 17390  df-bases 22299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator