Step | Hyp | Ref
| Expression |
1 | | f1ofo 6707 |
. . . . 5
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–onto→𝑌) |
2 | | qtopcmp.1 |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | elqtop2 22760 |
. . . . . 6
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 2 | elqtop2 22760 |
. . . . . 6
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–onto→𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) |
5 | 3, 4 | anbi12d 630 |
. . . . 5
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–onto→𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)))) |
6 | 1, 5 | sylan2 592 |
. . . 4
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)))) |
7 | | simpl1l 1222 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝐽 ∈ TopBases) |
8 | | simpl2r 1225 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
9 | | simpl3r 1227 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
10 | | simpl1r 1223 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝐹:𝑋–1-1-onto→𝑌) |
11 | | f1ocnv 6712 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
12 | | f1ofn 6701 |
. . . . . . . . . . . 12
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹 Fn 𝑌) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ◡𝐹 Fn 𝑌) |
14 | | simpl2l 1224 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑥 ⊆ 𝑌) |
15 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑧 ∈ (𝑥 ∩ 𝑦)) |
16 | 15 | elin1d 4128 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑧 ∈ 𝑥) |
17 | | fnfvima 7091 |
. . . . . . . . . . 11
⊢ ((◡𝐹 Fn 𝑌 ∧ 𝑥 ⊆ 𝑌 ∧ 𝑧 ∈ 𝑥) → (◡𝐹‘𝑧) ∈ (◡𝐹 “ 𝑥)) |
18 | 13, 14, 16, 17 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → (◡𝐹‘𝑧) ∈ (◡𝐹 “ 𝑥)) |
19 | | simpl3l 1226 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑦 ⊆ 𝑌) |
20 | 15 | elin2d 4129 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑧 ∈ 𝑦) |
21 | | fnfvima 7091 |
. . . . . . . . . . 11
⊢ ((◡𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌 ∧ 𝑧 ∈ 𝑦) → (◡𝐹‘𝑧) ∈ (◡𝐹 “ 𝑦)) |
22 | 13, 19, 20, 21 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → (◡𝐹‘𝑧) ∈ (◡𝐹 “ 𝑦)) |
23 | 18, 22 | elind 4124 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → (◡𝐹‘𝑧) ∈ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))) |
24 | | basis2 22009 |
. . . . . . . . 9
⊢ (((𝐽 ∈ TopBases ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ ((◡𝐹 “ 𝑦) ∈ 𝐽 ∧ (◡𝐹‘𝑧) ∈ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦)))) → ∃𝑤 ∈ 𝐽 ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦)))) |
25 | 7, 8, 9, 23, 24 | syl22anc 835 |
. . . . . . . 8
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝐽 ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦)))) |
26 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝐹:𝑋–1-1-onto→𝑌) |
27 | | inss1 4159 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 |
28 | | simp2l 1197 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑥 ⊆ 𝑌) |
29 | 27, 28 | sstrid 3928 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝑥 ∩ 𝑦) ⊆ 𝑌) |
30 | 29 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑧 ∈ 𝑌) |
31 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑧 ∈ 𝑌) |
32 | | f1ocnvfv2 7130 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑧 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
33 | 26, 31, 32 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
34 | | f1ofn 6701 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹 Fn 𝑋) |
35 | 26, 34 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝐹 Fn 𝑋) |
36 | | simprrr 778 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))) |
37 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦)) ⊆ (◡𝐹 “ 𝑥) |
38 | 36, 37 | sstrdi 3929 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑤 ⊆ (◡𝐹 “ 𝑥)) |
39 | | cnvimass 5978 |
. . . . . . . . . . . . 13
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
40 | | f1odm 6704 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋–1-1-onto→𝑌 → dom 𝐹 = 𝑋) |
41 | 26, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → dom 𝐹 = 𝑋) |
42 | 39, 41 | sseqtrid 3969 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (◡𝐹 “ 𝑥) ⊆ 𝑋) |
43 | 38, 42 | sstrd 3927 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑤 ⊆ 𝑋) |
44 | | simprrl 777 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (◡𝐹‘𝑧) ∈ 𝑤) |
45 | | fnfvima 7091 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑋 ∧ 𝑤 ⊆ 𝑋 ∧ (◡𝐹‘𝑧) ∈ 𝑤) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹 “ 𝑤)) |
46 | 35, 43, 44, 45 | syl3anc 1369 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹 “ 𝑤)) |
47 | 33, 46 | eqeltrrd 2840 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑧 ∈ (𝐹 “ 𝑤)) |
48 | | imassrn 5969 |
. . . . . . . . . . . 12
⊢ (𝐹 “ 𝑤) ⊆ ran 𝐹 |
49 | 26, 1 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝐹:𝑋–onto→𝑌) |
50 | | forn 6675 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋–onto→𝑌 → ran 𝐹 = 𝑌) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → ran 𝐹 = 𝑌) |
52 | 48, 51 | sseqtrid 3969 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (𝐹 “ 𝑤) ⊆ 𝑌) |
53 | | f1of1 6699 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–1-1→𝑌) |
54 | 26, 53 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝐹:𝑋–1-1→𝑌) |
55 | | f1imacnv 6716 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ 𝑤 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝑤)) = 𝑤) |
56 | 54, 43, 55 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (◡𝐹 “ (𝐹 “ 𝑤)) = 𝑤) |
57 | | simprl 767 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑤 ∈ 𝐽) |
58 | 56, 57 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (◡𝐹 “ (𝐹 “ 𝑤)) ∈ 𝐽) |
59 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝐽 ∈ TopBases) |
60 | 2 | elqtop2 22760 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–onto→𝑌) → ((𝐹 “ 𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑤) ⊆ 𝑌 ∧ (◡𝐹 “ (𝐹 “ 𝑤)) ∈ 𝐽))) |
61 | 59, 49, 60 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → ((𝐹 “ 𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑤) ⊆ 𝑌 ∧ (◡𝐹 “ (𝐹 “ 𝑤)) ∈ 𝐽))) |
62 | 52, 58, 61 | mpbir2and 709 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (𝐹 “ 𝑤) ∈ (𝐽 qTop 𝐹)) |
63 | | fnfun 6517 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
64 | | inpreima 6923 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 → (◡𝐹 “ (𝑥 ∩ 𝑦)) = ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))) |
65 | 35, 63, 64 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (◡𝐹 “ (𝑥 ∩ 𝑦)) = ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))) |
66 | 36, 65 | sseqtrrd 3958 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑤 ⊆ (◡𝐹 “ (𝑥 ∩ 𝑦))) |
67 | 35, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → Fun 𝐹) |
68 | 38, 39 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑤 ⊆ dom 𝐹) |
69 | | funimass3 6913 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑤 ⊆ dom 𝐹) → ((𝐹 “ 𝑤) ⊆ (𝑥 ∩ 𝑦) ↔ 𝑤 ⊆ (◡𝐹 “ (𝑥 ∩ 𝑦)))) |
70 | 67, 68, 69 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → ((𝐹 “ 𝑤) ⊆ (𝑥 ∩ 𝑦) ↔ 𝑤 ⊆ (◡𝐹 “ (𝑥 ∩ 𝑦)))) |
71 | 66, 70 | mpbird 256 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (𝐹 “ 𝑤) ⊆ (𝑥 ∩ 𝑦)) |
72 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
73 | 72 | inex1 5236 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝑦) ∈ V |
74 | 73 | elpw2 5264 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑤) ∈ 𝒫 (𝑥 ∩ 𝑦) ↔ (𝐹 “ 𝑤) ⊆ (𝑥 ∩ 𝑦)) |
75 | 71, 74 | sylibr 233 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (𝐹 “ 𝑤) ∈ 𝒫 (𝑥 ∩ 𝑦)) |
76 | 62, 75 | elind 4124 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → (𝐹 “ 𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) |
77 | | elunii 4841 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝐹 “ 𝑤) ∧ (𝐹 “ 𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) → 𝑧 ∈ ∪ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) |
78 | 47, 76, 77 | syl2anc 583 |
. . . . . . . 8
⊢
(((((𝐽 ∈
TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑤 ∈ 𝐽 ∧ ((◡𝐹‘𝑧) ∈ 𝑤 ∧ 𝑤 ⊆ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝑦))))) → 𝑧 ∈ ∪ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) |
79 | 25, 78 | rexlimddv 3219 |
. . . . . . 7
⊢ ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑧 ∈ ∪ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) |
80 | 79 | ex 412 |
. . . . . 6
⊢ (((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝑧 ∈ (𝑥 ∩ 𝑦) → 𝑧 ∈ ∪ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
81 | 80 | ssrdv 3923 |
. . . . 5
⊢ (((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝑥 ∩ 𝑦) ⊆ ∪
((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) |
82 | 81 | 3expib 1120 |
. . . 4
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → (((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝑥 ∩ 𝑦) ⊆ ∪
((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
83 | 6, 82 | sylbid 239 |
. . 3
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) → (𝑥 ∩ 𝑦) ⊆ ∪
((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
84 | 83 | ralrimivv 3113 |
. 2
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥 ∩ 𝑦) ⊆ ∪
((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) |
85 | | ovex 7288 |
. . 3
⊢ (𝐽 qTop 𝐹) ∈ V |
86 | | isbasisg 22005 |
. . 3
⊢ ((𝐽 qTop 𝐹) ∈ V → ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥 ∩ 𝑦) ⊆ ∪
((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
87 | 85, 86 | ax-mp 5 |
. 2
⊢ ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥 ∩ 𝑦) ⊆ ∪
((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥 ∩ 𝑦))) |
88 | 84, 87 | sylibr 233 |
1
⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝐽 qTop 𝐹) ∈ TopBases) |