Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscmgmALT Structured version   Visualization version   GIF version

Theorem iscmgmALT 45370
Description: The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ismgmALT.b 𝐵 = (Base‘𝑀)
ismgmALT.o = (+g𝑀)
Assertion
Ref Expression
iscmgmALT (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ comLaw 𝐵))

Proof of Theorem iscmgmALT
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6768 . . . 4 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
2 fveq2 6768 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
31, 2breq12d 5091 . . 3 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ (+g𝑀) comLaw (Base‘𝑀)))
4 ismgmALT.o . . . 4 = (+g𝑀)
5 ismgmALT.b . . . 4 𝐵 = (Base‘𝑀)
64, 5breq12i 5087 . . 3 ( comLaw 𝐵 ↔ (+g𝑀) comLaw (Base‘𝑀))
73, 6bitr4di 288 . 2 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ comLaw 𝐵))
8 df-cmgm2 45366 . 2 CMgmALT = {𝑚 ∈ MgmALT ∣ (+g𝑚) comLaw (Base‘𝑚)}
97, 8elrab2 3628 1 (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ comLaw 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  Basecbs 16893  +gcplusg 16943   comLaw ccomlaw 45331  MgmALTcmgm2 45361  CMgmALTccmgm2 45362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-cmgm2 45366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator