| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscmgmALT | Structured version Visualization version GIF version | ||
| Description: The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| iscmgmALT | ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
| 2 | fveq2 6886 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 3 | 1, 2 | breq12d 5136 | . . 3 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ (+g‘𝑀) comLaw (Base‘𝑀))) |
| 4 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
| 5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 4, 5 | breq12i 5132 | . . 3 ⊢ ( ⚬ comLaw 𝐵 ↔ (+g‘𝑀) comLaw (Base‘𝑀)) |
| 7 | 3, 6 | bitr4di 289 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ ⚬ comLaw 𝐵)) |
| 8 | df-cmgm2 48094 | . 2 ⊢ CMgmALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) comLaw (Base‘𝑚)} | |
| 9 | 7, 8 | elrab2 3678 | 1 ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 +gcplusg 17273 comLaw ccomlaw 48059 MgmALTcmgm2 48089 CMgmALTccmgm2 48090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-cmgm2 48094 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |