Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscmgmALT Structured version   Visualization version   GIF version

Theorem iscmgmALT 48106
Description: The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ismgmALT.b 𝐵 = (Base‘𝑀)
ismgmALT.o = (+g𝑀)
Assertion
Ref Expression
iscmgmALT (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ comLaw 𝐵))

Proof of Theorem iscmgmALT
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6914 . . . 4 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
2 fveq2 6914 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
31, 2breq12d 5164 . . 3 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ (+g𝑀) comLaw (Base‘𝑀)))
4 ismgmALT.o . . . 4 = (+g𝑀)
5 ismgmALT.b . . . 4 𝐵 = (Base‘𝑀)
64, 5breq12i 5160 . . 3 ( comLaw 𝐵 ↔ (+g𝑀) comLaw (Base‘𝑀))
73, 6bitr4di 289 . 2 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ comLaw 𝐵))
8 df-cmgm2 48102 . 2 CMgmALT = {𝑚 ∈ MgmALT ∣ (+g𝑚) comLaw (Base‘𝑚)}
97, 8elrab2 3701 1 (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ comLaw 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2108   class class class wbr 5151  cfv 6569  Basecbs 17254  +gcplusg 17307   comLaw ccomlaw 48067  MgmALTcmgm2 48097  CMgmALTccmgm2 48098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-cmgm2 48102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator