Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscmgmALT Structured version   Visualization version   GIF version

Theorem iscmgmALT 48255
Description: The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ismgmALT.b 𝐵 = (Base‘𝑀)
ismgmALT.o = (+g𝑀)
Assertion
Ref Expression
iscmgmALT (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ comLaw 𝐵))

Proof of Theorem iscmgmALT
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . 4 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
2 fveq2 6817 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
31, 2breq12d 5099 . . 3 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ (+g𝑀) comLaw (Base‘𝑀)))
4 ismgmALT.o . . . 4 = (+g𝑀)
5 ismgmALT.b . . . 4 𝐵 = (Base‘𝑀)
64, 5breq12i 5095 . . 3 ( comLaw 𝐵 ↔ (+g𝑀) comLaw (Base‘𝑀))
73, 6bitr4di 289 . 2 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ comLaw 𝐵))
8 df-cmgm2 48251 . 2 CMgmALT = {𝑚 ∈ MgmALT ∣ (+g𝑚) comLaw (Base‘𝑚)}
97, 8elrab2 3645 1 (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ comLaw 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  Basecbs 17115  +gcplusg 17156   comLaw ccomlaw 48216  MgmALTcmgm2 48246  CMgmALTccmgm2 48247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-cmgm2 48251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator