![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscmgmALT | Structured version Visualization version GIF version |
Description: The predicate "is a commutative magma." (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
iscmgmALT | ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6437 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
2 | fveq2 6437 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
3 | 1, 2 | breq12d 4888 | . . 3 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ (+g‘𝑀) comLaw (Base‘𝑀))) |
4 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | breq12i 4884 | . . 3 ⊢ ( ⚬ comLaw 𝐵 ↔ (+g‘𝑀) comLaw (Base‘𝑀)) |
7 | 3, 6 | syl6bbr 281 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ ⚬ comLaw 𝐵)) |
8 | df-cmgm2 42721 | . 2 ⊢ CMgmALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) comLaw (Base‘𝑚)} | |
9 | 7, 8 | elrab2 3589 | 1 ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 class class class wbr 4875 ‘cfv 6127 Basecbs 16229 +gcplusg 16312 comLaw ccomlaw 42686 MgmALTcmgm2 42716 CMgmALTccmgm2 42717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-iota 6090 df-fv 6135 df-cmgm2 42721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |