![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscmgmALT | Structured version Visualization version GIF version |
Description: The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
iscmgmALT | ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
2 | fveq2 6881 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
3 | 1, 2 | breq12d 5151 | . . 3 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ (+g‘𝑀) comLaw (Base‘𝑀))) |
4 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | breq12i 5147 | . . 3 ⊢ ( ⚬ comLaw 𝐵 ↔ (+g‘𝑀) comLaw (Base‘𝑀)) |
7 | 3, 6 | bitr4di 289 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ ⚬ comLaw 𝐵)) |
8 | df-cmgm2 47049 | . 2 ⊢ CMgmALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) comLaw (Base‘𝑚)} | |
9 | 7, 8 | elrab2 3678 | 1 ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5138 ‘cfv 6533 Basecbs 17142 +gcplusg 17195 comLaw ccomlaw 47014 MgmALTcmgm2 47044 CMgmALTccmgm2 47045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-cmgm2 47049 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |