Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issgrpALT Structured version   Visualization version   GIF version

Theorem issgrpALT 48264
Description: The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ismgmALT.b 𝐵 = (Base‘𝑀)
ismgmALT.o = (+g𝑀)
Assertion
Ref Expression
issgrpALT (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ assLaw 𝐵))

Proof of Theorem issgrpALT
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
2 ismgmALT.o . . . 4 = (+g𝑀)
31, 2eqtr4di 2784 . . 3 (𝑚 = 𝑀 → (+g𝑚) = )
4 fveq2 6822 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 ismgmALT.b . . . 4 𝐵 = (Base‘𝑀)
64, 5eqtr4di 2784 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6breq12d 5102 . 2 (𝑚 = 𝑀 → ((+g𝑚) assLaw (Base‘𝑚) ↔ assLaw 𝐵))
8 df-sgrp2 48260 . 2 SGrpALT = {𝑚 ∈ MgmALT ∣ (+g𝑚) assLaw (Base‘𝑚)}
97, 8elrab2 3645 1 (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ assLaw 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  Basecbs 17120  +gcplusg 17161   assLaw casslaw 48223  MgmALTcmgm2 48254  SGrpALTcsgrp2 48256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-sgrp2 48260
This theorem is referenced by:  sgrp2sgrp  48267
  Copyright terms: Public domain W3C validator