Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issgrpALT Structured version   Visualization version   GIF version

Theorem issgrpALT 46635
Description: The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ismgmALT.b 𝐵 = (Base‘𝑀)
ismgmALT.o = (+g𝑀)
Assertion
Ref Expression
issgrpALT (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ assLaw 𝐵))

Proof of Theorem issgrpALT
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . 4 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
2 ismgmALT.o . . . 4 = (+g𝑀)
31, 2eqtr4di 2791 . . 3 (𝑚 = 𝑀 → (+g𝑚) = )
4 fveq2 6892 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 ismgmALT.b . . . 4 𝐵 = (Base‘𝑀)
64, 5eqtr4di 2791 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6breq12d 5162 . 2 (𝑚 = 𝑀 → ((+g𝑚) assLaw (Base‘𝑚) ↔ assLaw 𝐵))
8 df-sgrp2 46631 . 2 SGrpALT = {𝑚 ∈ MgmALT ∣ (+g𝑚) assLaw (Base‘𝑚)}
97, 8elrab2 3687 1 (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ assLaw 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5149  cfv 6544  Basecbs 17144  +gcplusg 17197   assLaw casslaw 46594  MgmALTcmgm2 46625  SGrpALTcsgrp2 46627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-sgrp2 46631
This theorem is referenced by:  sgrp2sgrp  46638
  Copyright terms: Public domain W3C validator