![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issgrpALT | Structured version Visualization version GIF version |
Description: The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
issgrpALT | ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6893 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
2 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
3 | 1, 2 | eqtr4di 2784 | . . 3 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = ⚬ ) |
4 | fveq2 6893 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | eqtr4di 2784 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
7 | 3, 6 | breq12d 5158 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) assLaw (Base‘𝑚) ↔ ⚬ assLaw 𝐵)) |
8 | df-sgrp2 47634 | . 2 ⊢ SGrpALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) assLaw (Base‘𝑚)} | |
9 | 7, 8 | elrab2 3683 | 1 ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 class class class wbr 5145 ‘cfv 6546 Basecbs 17208 +gcplusg 17261 assLaw casslaw 47597 MgmALTcmgm2 47628 SGrpALTcsgrp2 47630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-iota 6498 df-fv 6554 df-sgrp2 47634 |
This theorem is referenced by: sgrp2sgrp 47641 |
Copyright terms: Public domain | W3C validator |