| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issgrpALT | Structured version Visualization version GIF version | ||
| Description: The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| issgrpALT | ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
| 2 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = ⚬ ) |
| 4 | fveq2 6822 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 4, 5 | eqtr4di 2782 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 7 | 3, 6 | breq12d 5105 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) assLaw (Base‘𝑚) ↔ ⚬ assLaw 𝐵)) |
| 8 | df-sgrp2 48205 | . 2 ⊢ SGrpALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) assLaw (Base‘𝑚)} | |
| 9 | 7, 8 | elrab2 3651 | 1 ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 +gcplusg 17161 assLaw casslaw 48168 MgmALTcmgm2 48199 SGrpALTcsgrp2 48201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-sgrp2 48205 |
| This theorem is referenced by: sgrp2sgrp 48212 |
| Copyright terms: Public domain | W3C validator |