|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issgrpALT | Structured version Visualization version GIF version | ||
| Description: The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) | 
| ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) | 
| Ref | Expression | 
|---|---|
| issgrpALT | ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 6905 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
| 2 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2794 | . . 3 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = ⚬ ) | 
| 4 | fveq2 6905 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 4, 5 | eqtr4di 2794 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) | 
| 7 | 3, 6 | breq12d 5155 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) assLaw (Base‘𝑚) ↔ ⚬ assLaw 𝐵)) | 
| 8 | df-sgrp2 48142 | . 2 ⊢ SGrpALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) assLaw (Base‘𝑚)} | |
| 9 | 7, 8 | elrab2 3694 | 1 ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 Basecbs 17248 +gcplusg 17298 assLaw casslaw 48105 MgmALTcmgm2 48136 SGrpALTcsgrp2 48138 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-sgrp2 48142 | 
| This theorem is referenced by: sgrp2sgrp 48149 | 
| Copyright terms: Public domain | W3C validator |