![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismgmALT | Structured version Visualization version GIF version |
Description: The predicate "is a magma". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgmALT | ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ MgmALT ↔ ⚬ clLaw 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
2 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
3 | 1, 2 | eqtr4di 2790 | . . 3 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = ⚬ ) |
4 | fveq2 6891 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | eqtr4di 2790 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
7 | 3, 6 | breq12d 5161 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) clLaw (Base‘𝑚) ↔ ⚬ clLaw 𝐵)) |
8 | df-mgm2 46619 | . 2 ⊢ MgmALT = {𝑚 ∣ (+g‘𝑚) clLaw (Base‘𝑚)} | |
9 | 7, 8 | elab2g 3670 | 1 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ MgmALT ↔ ⚬ clLaw 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6543 Basecbs 17143 +gcplusg 17196 clLaw ccllaw 46583 MgmALTcmgm2 46615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-mgm2 46619 |
This theorem is referenced by: mgm2mgm 46627 |
Copyright terms: Public domain | W3C validator |