Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismgmALT Structured version   Visualization version   GIF version

Theorem ismgmALT 46058
Description: The predicate "is a magma". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ismgmALT.b 𝐵 = (Base‘𝑀)
ismgmALT.o = (+g𝑀)
Assertion
Ref Expression
ismgmALT (𝑀𝑉 → (𝑀 ∈ MgmALT ↔ clLaw 𝐵))

Proof of Theorem ismgmALT
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6839 . . . 4 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
2 ismgmALT.o . . . 4 = (+g𝑀)
31, 2eqtr4di 2795 . . 3 (𝑚 = 𝑀 → (+g𝑚) = )
4 fveq2 6839 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 ismgmALT.b . . . 4 𝐵 = (Base‘𝑀)
64, 5eqtr4di 2795 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6breq12d 5116 . 2 (𝑚 = 𝑀 → ((+g𝑚) clLaw (Base‘𝑚) ↔ clLaw 𝐵))
8 df-mgm2 46054 . 2 MgmALT = {𝑚 ∣ (+g𝑚) clLaw (Base‘𝑚)}
97, 8elab2g 3630 1 (𝑀𝑉 → (𝑀 ∈ MgmALT ↔ clLaw 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106   class class class wbr 5103  cfv 6493  Basecbs 17043  +gcplusg 17093   clLaw ccllaw 46018  MgmALTcmgm2 46050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-iota 6445  df-fv 6501  df-mgm2 46054
This theorem is referenced by:  mgm2mgm  46062
  Copyright terms: Public domain W3C validator