| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismgmALT | Structured version Visualization version GIF version | ||
| Description: The predicate "is a magma". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgmALT | ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ MgmALT ↔ ⚬ clLaw 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
| 2 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
| 3 | 1, 2 | eqtr4di 2789 | . . 3 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = ⚬ ) |
| 4 | fveq2 6881 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 4, 5 | eqtr4di 2789 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 7 | 3, 6 | breq12d 5137 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) clLaw (Base‘𝑚) ↔ ⚬ clLaw 𝐵)) |
| 8 | df-mgm2 48161 | . 2 ⊢ MgmALT = {𝑚 ∣ (+g‘𝑚) clLaw (Base‘𝑚)} | |
| 9 | 7, 8 | elab2g 3664 | 1 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ MgmALT ↔ ⚬ clLaw 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 +gcplusg 17276 clLaw ccllaw 48125 MgmALTcmgm2 48157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-mgm2 48161 |
| This theorem is referenced by: mgm2mgm 48169 |
| Copyright terms: Public domain | W3C validator |