| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| breq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 5129 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: 3brtr3g 5157 3brtr4g 5158 caovord2 7624 domunfican 9338 ltsonq 10988 ltanq 10990 ltmnq 10991 prlem934 11052 prlem936 11066 ltsosr 11113 ltasr 11119 ltneg 11742 leneg 11745 inelr 12235 lt2sqi 14212 le2sqi 14213 nn0le2msqi 14290 2sqreuop 27430 2sqreuopnn 27431 2sqreuoplt 27432 2sqreuopltb 27433 2sqreuopnnlt 27434 2sqreuopnnltb 27435 axlowdimlem6 28931 upgrwlkcompim 29628 clwlkcompbp 29769 mdsldmd1i 32317 fldext2chn 33767 constrextdg2lem 33787 divcnvlin 35755 ditgeq123i 36232 cbvditgvw2 36272 relowlpssretop 37387 2ap1caineq 42163 fsumlessf 45573 climlimsupcex 45765 liminfltlimsupex 45777 liminflelimsupcex 45793 sge0xaddlem2 46430 eubrdm 47032 isgrlim2 47962 iscmgmALT 48166 iscsgrpALT 48168 |
| Copyright terms: Public domain | W3C validator |