| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| breq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 5107 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: 3brtr3g 5135 3brtr4g 5136 caovord2 7581 domunfican 9248 ltsonq 10898 ltanq 10900 ltmnq 10901 prlem934 10962 prlem936 10976 ltsosr 11023 ltasr 11029 ltneg 11654 leneg 11657 lt2sqi 14130 le2sqi 14131 nn0le2msqi 14208 2sqreuop 27406 2sqreuopnn 27407 2sqreuoplt 27408 2sqreuopltb 27409 2sqreuopnnlt 27410 2sqreuopnnltb 27411 axlowdimlem6 28927 upgrwlkcompim 29623 clwlkcompbp 29762 mdsldmd1i 32310 fldext2chn 33711 constrextdg2lem 33731 divcnvlin 35713 ditgeq123i 36190 cbvditgvw2 36230 relowlpssretop 37345 2ap1caineq 42126 fsumlessf 45568 climlimsupcex 45760 liminfltlimsupex 45772 liminflelimsupcex 45788 sge0xaddlem2 46425 eubrdm 47030 isgrlim2 47975 iscmgmALT 48205 iscsgrpALT 48207 |
| Copyright terms: Public domain | W3C validator |