| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| breq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 5094 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: 3brtr3g 5122 3brtr4g 5123 caovord2 7558 domunfican 9206 ltsonq 10860 ltanq 10862 ltmnq 10863 prlem934 10924 prlem936 10938 ltsosr 10985 ltasr 10991 ltneg 11617 leneg 11620 lt2sqi 14096 le2sqi 14097 nn0le2msqi 14174 2sqreuop 27400 2sqreuopnn 27401 2sqreuoplt 27402 2sqreuopltb 27403 2sqreuopnnlt 27404 2sqreuopnnltb 27405 axlowdimlem6 28925 upgrwlkcompim 29621 clwlkcompbp 29760 mdsldmd1i 32311 fldext2chn 33741 constrextdg2lem 33761 divcnvlin 35777 ditgeq123i 36253 cbvditgvw2 36293 relowlpssretop 37408 2ap1caineq 42237 fsumlessf 45676 climlimsupcex 45866 liminfltlimsupex 45878 liminflelimsupcex 45894 sge0xaddlem2 46531 eubrdm 47135 isgrlim2 48082 iscmgmALT 48323 iscsgrpALT 48325 |
| Copyright terms: Public domain | W3C validator |