Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
breq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | breq12 5083 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: 3brtr3g 5111 3brtr4g 5112 caovord2 7475 domunfican 9048 ltsonq 10709 ltanq 10711 ltmnq 10712 prlem934 10773 prlem936 10787 ltsosr 10834 ltasr 10840 ltneg 11458 leneg 11461 inelr 11946 lt2sqi 13887 le2sqi 13888 nn0le2msqi 13962 2sqreuop 26591 2sqreuopnn 26592 2sqreuoplt 26593 2sqreuopltb 26594 2sqreuopnnlt 26595 2sqreuopnnltb 26596 axlowdimlem6 27296 upgrwlkcompim 27990 clwlkcompbp 28129 mdsldmd1i 30672 divcnvlin 33677 relowlpssretop 35514 2ap1caineq 40081 fsumlessf 43072 climlimsupcex 43264 liminfltlimsupex 43276 liminflelimsupcex 43292 sge0xaddlem2 43926 eubrdm 44481 iscmgmALT 45370 iscsgrpALT 45372 |
Copyright terms: Public domain | W3C validator |