| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| breq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 5097 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: 3brtr3g 5125 3brtr4g 5126 caovord2 7561 domunfican 9211 ltsonq 10863 ltanq 10865 ltmnq 10866 prlem934 10927 prlem936 10941 ltsosr 10988 ltasr 10994 ltneg 11620 leneg 11623 lt2sqi 14096 le2sqi 14097 nn0le2msqi 14174 2sqreuop 27371 2sqreuopnn 27372 2sqreuoplt 27373 2sqreuopltb 27374 2sqreuopnnlt 27375 2sqreuopnnltb 27376 axlowdimlem6 28896 upgrwlkcompim 29592 clwlkcompbp 29731 mdsldmd1i 32279 fldext2chn 33711 constrextdg2lem 33731 divcnvlin 35726 ditgeq123i 36203 cbvditgvw2 36243 relowlpssretop 37358 2ap1caineq 42138 fsumlessf 45578 climlimsupcex 45770 liminfltlimsupex 45782 liminflelimsupcex 45798 sge0xaddlem2 46435 eubrdm 47040 isgrlim2 47987 iscmgmALT 48228 iscsgrpALT 48230 |
| Copyright terms: Public domain | W3C validator |