Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
breq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | breq12 5086 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 class class class wbr 5081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 |
This theorem is referenced by: 3brtr3g 5114 3brtr4g 5115 caovord2 7516 domunfican 9131 ltsonq 10771 ltanq 10773 ltmnq 10774 prlem934 10835 prlem936 10849 ltsosr 10896 ltasr 10902 ltneg 11521 leneg 11524 inelr 12009 lt2sqi 13952 le2sqi 13953 nn0le2msqi 14027 2sqreuop 26655 2sqreuopnn 26656 2sqreuoplt 26657 2sqreuopltb 26658 2sqreuopnnlt 26659 2sqreuopnnltb 26660 axlowdimlem6 27360 upgrwlkcompim 28055 clwlkcompbp 28195 mdsldmd1i 30738 divcnvlin 33743 relowlpssretop 35579 2ap1caineq 40143 fsumlessf 43167 climlimsupcex 43359 liminfltlimsupex 43371 liminflelimsupcex 43387 sge0xaddlem2 44022 eubrdm 44588 iscmgmALT 45476 iscsgrpALT 45478 |
Copyright terms: Public domain | W3C validator |