![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
breq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | breq12 5152 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 |
This theorem is referenced by: 3brtr3g 5180 3brtr4g 5181 caovord2 7621 domunfican 9322 ltsonq 10966 ltanq 10968 ltmnq 10969 prlem934 11030 prlem936 11044 ltsosr 11091 ltasr 11097 ltneg 11718 leneg 11721 inelr 12206 lt2sqi 14157 le2sqi 14158 nn0le2msqi 14231 2sqreuop 27201 2sqreuopnn 27202 2sqreuoplt 27203 2sqreuopltb 27204 2sqreuopnnlt 27205 2sqreuopnnltb 27206 axlowdimlem6 28472 upgrwlkcompim 29167 clwlkcompbp 29306 mdsldmd1i 31851 divcnvlin 35006 relowlpssretop 36548 2ap1caineq 41267 fsumlessf 44591 climlimsupcex 44783 liminfltlimsupex 44795 liminflelimsupcex 44811 sge0xaddlem2 45448 eubrdm 46044 iscmgmALT 46900 iscsgrpALT 46902 |
Copyright terms: Public domain | W3C validator |