| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| breq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 5112 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: 3brtr3g 5140 3brtr4g 5141 caovord2 7601 domunfican 9272 ltsonq 10922 ltanq 10924 ltmnq 10925 prlem934 10986 prlem936 11000 ltsosr 11047 ltasr 11053 ltneg 11678 leneg 11681 lt2sqi 14154 le2sqi 14155 nn0le2msqi 14232 2sqreuop 27373 2sqreuopnn 27374 2sqreuoplt 27375 2sqreuopltb 27376 2sqreuopnnlt 27377 2sqreuopnnltb 27378 axlowdimlem6 28874 upgrwlkcompim 29571 clwlkcompbp 29712 mdsldmd1i 32260 fldext2chn 33718 constrextdg2lem 33738 divcnvlin 35720 ditgeq123i 36197 cbvditgvw2 36237 relowlpssretop 37352 2ap1caineq 42133 fsumlessf 45575 climlimsupcex 45767 liminfltlimsupex 45779 liminflelimsupcex 45795 sge0xaddlem2 46432 eubrdm 47037 isgrlim2 47982 iscmgmALT 48212 iscsgrpALT 48214 |
| Copyright terms: Public domain | W3C validator |