![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
breq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | breq12 5171 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: 3brtr3g 5199 3brtr4g 5200 caovord2 7662 domunfican 9389 ltsonq 11038 ltanq 11040 ltmnq 11041 prlem934 11102 prlem936 11116 ltsosr 11163 ltasr 11169 ltneg 11790 leneg 11793 inelr 12283 lt2sqi 14238 le2sqi 14239 nn0le2msqi 14316 2sqreuop 27524 2sqreuopnn 27525 2sqreuoplt 27526 2sqreuopltb 27527 2sqreuopnnlt 27528 2sqreuopnnltb 27529 axlowdimlem6 28980 upgrwlkcompim 29679 clwlkcompbp 29818 mdsldmd1i 32363 divcnvlin 35695 ditgeq123i 36173 cbvditgvw2 36215 relowlpssretop 37330 2ap1caineq 42102 fsumlessf 45498 climlimsupcex 45690 liminfltlimsupex 45702 liminflelimsupcex 45718 sge0xaddlem2 46355 eubrdm 46951 isgrlim2 47807 iscmgmALT 47947 iscsgrpALT 47949 |
Copyright terms: Public domain | W3C validator |