| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| breq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 5115 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: 3brtr3g 5143 3brtr4g 5144 caovord2 7604 domunfican 9279 ltsonq 10929 ltanq 10931 ltmnq 10932 prlem934 10993 prlem936 11007 ltsosr 11054 ltasr 11060 ltneg 11685 leneg 11688 lt2sqi 14161 le2sqi 14162 nn0le2msqi 14239 2sqreuop 27380 2sqreuopnn 27381 2sqreuoplt 27382 2sqreuopltb 27383 2sqreuopnnlt 27384 2sqreuopnnltb 27385 axlowdimlem6 28881 upgrwlkcompim 29578 clwlkcompbp 29719 mdsldmd1i 32267 fldext2chn 33725 constrextdg2lem 33745 divcnvlin 35727 ditgeq123i 36204 cbvditgvw2 36244 relowlpssretop 37359 2ap1caineq 42140 fsumlessf 45582 climlimsupcex 45774 liminfltlimsupex 45786 liminflelimsupcex 45802 sge0xaddlem2 46439 eubrdm 47041 isgrlim2 47986 iscmgmALT 48216 iscsgrpALT 48218 |
| Copyright terms: Public domain | W3C validator |