Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscsgrpALT Structured version   Visualization version   GIF version

Theorem iscsgrpALT 45420
Description: The predicate "is a commutative semigroup". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ismgmALT.b 𝐵 = (Base‘𝑀)
ismgmALT.o = (+g𝑀)
Assertion
Ref Expression
iscsgrpALT (𝑀 ∈ CSGrpALT ↔ (𝑀 ∈ SGrpALT ∧ comLaw 𝐵))

Proof of Theorem iscsgrpALT
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
2 fveq2 6774 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
31, 2breq12d 5087 . . 3 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ (+g𝑀) comLaw (Base‘𝑀)))
4 ismgmALT.o . . . 4 = (+g𝑀)
5 ismgmALT.b . . . 4 𝐵 = (Base‘𝑀)
64, 5breq12i 5083 . . 3 ( comLaw 𝐵 ↔ (+g𝑀) comLaw (Base‘𝑀))
73, 6bitr4di 289 . 2 (𝑚 = 𝑀 → ((+g𝑚) comLaw (Base‘𝑚) ↔ comLaw 𝐵))
8 df-csgrp2 45416 . 2 CSGrpALT = {𝑚 ∈ SGrpALT ∣ (+g𝑚) comLaw (Base‘𝑚)}
97, 8elrab2 3627 1 (𝑀 ∈ CSGrpALT ↔ (𝑀 ∈ SGrpALT ∧ comLaw 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  Basecbs 16912  +gcplusg 16962   comLaw ccomlaw 45379  SGrpALTcsgrp2 45411  CSGrpALTccsgrp2 45412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-csgrp2 45416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator