![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscsgrpALT | Structured version Visualization version GIF version |
Description: The predicate "is a commutative semigroup". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ismgmALT.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmALT.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
iscsgrpALT | ⊢ (𝑀 ∈ CSGrpALT ↔ (𝑀 ∈ SGrpALT ∧ ⚬ comLaw 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . 4 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
2 | fveq2 6907 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
3 | 1, 2 | breq12d 5161 | . . 3 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ (+g‘𝑀) comLaw (Base‘𝑀))) |
4 | ismgmALT.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
5 | ismgmALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 4, 5 | breq12i 5157 | . . 3 ⊢ ( ⚬ comLaw 𝐵 ↔ (+g‘𝑀) comLaw (Base‘𝑀)) |
7 | 3, 6 | bitr4di 289 | . 2 ⊢ (𝑚 = 𝑀 → ((+g‘𝑚) comLaw (Base‘𝑚) ↔ ⚬ comLaw 𝐵)) |
8 | df-csgrp2 48066 | . 2 ⊢ CSGrpALT = {𝑚 ∈ SGrpALT ∣ (+g‘𝑚) comLaw (Base‘𝑚)} | |
9 | 7, 8 | elrab2 3698 | 1 ⊢ (𝑀 ∈ CSGrpALT ↔ (𝑀 ∈ SGrpALT ∧ ⚬ comLaw 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 +gcplusg 17298 comLaw ccomlaw 48029 SGrpALTcsgrp2 48061 CSGrpALTccsgrp2 48062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-csgrp2 48066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |