Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgm2mgm Structured version   Visualization version   GIF version

Theorem mgm2mgm 48169
Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
mgm2mgm (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)

Proof of Theorem mgm2mgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2736 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2ismgmALT 48165 . . . 4 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
4 fvex 6894 . . . . . 6 (+g𝑀) ∈ V
5 fvex 6894 . . . . . 6 (Base‘𝑀) ∈ V
6 iscllaw 48131 . . . . . 6 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
74, 5, 6mp2an 692 . . . . 5 ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
81, 2ismgm 18624 . . . . . 6 (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
98biimprd 248 . . . . 5 (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm))
107, 9biimtrid 242 . . . 4 (𝑀 ∈ MgmALT → ((+g𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm))
113, 10sylbid 240 . . 3 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm))
1211pm2.43i 52 . 2 (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)
13 mgmplusgiopALT 48136 . . 3 (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))
141, 2ismgmALT 48165 . . 3 (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
1513, 14mpbird 257 . 2 (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT)
1612, 15impbii 209 1 (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wral 3052  Vcvv 3464   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Mgmcmgm 18621   clLaw ccllaw 48125  MgmALTcmgm2 48157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-iota 6489  df-fv 6544  df-ov 7413  df-mgm 18623  df-cllaw 48128  df-mgm2 48161
This theorem is referenced by:  sgrp2sgrp  48170
  Copyright terms: Public domain W3C validator