Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgm2mgm Structured version   Visualization version   GIF version

Theorem mgm2mgm 47159
Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
mgm2mgm (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)

Proof of Theorem mgm2mgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2726 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2ismgmALT 47155 . . . 4 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
4 fvex 6897 . . . . . 6 (+g𝑀) ∈ V
5 fvex 6897 . . . . . 6 (Base‘𝑀) ∈ V
6 iscllaw 47121 . . . . . 6 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
74, 5, 6mp2an 689 . . . . 5 ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
81, 2ismgm 18571 . . . . . 6 (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
98biimprd 247 . . . . 5 (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm))
107, 9biimtrid 241 . . . 4 (𝑀 ∈ MgmALT → ((+g𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm))
113, 10sylbid 239 . . 3 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm))
1211pm2.43i 52 . 2 (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)
13 mgmplusgiopALT 47126 . . 3 (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))
141, 2ismgmALT 47155 . . 3 (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
1513, 14mpbird 257 . 2 (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT)
1612, 15impbii 208 1 (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  wral 3055  Vcvv 3468   class class class wbr 5141  cfv 6536  (class class class)co 7404  Basecbs 17150  +gcplusg 17203  Mgmcmgm 18568   clLaw ccllaw 47115  MgmALTcmgm2 47147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-iota 6488  df-fv 6544  df-ov 7407  df-mgm 18570  df-cllaw 47118  df-mgm2 47151
This theorem is referenced by:  sgrp2sgrp  47160
  Copyright terms: Public domain W3C validator