Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgm2mgm | Structured version Visualization version GIF version |
Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.) |
Ref | Expression |
---|---|
mgm2mgm | ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | ismgmALT 45417 | . . . 4 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
4 | fvex 6787 | . . . . . 6 ⊢ (+g‘𝑀) ∈ V | |
5 | fvex 6787 | . . . . . 6 ⊢ (Base‘𝑀) ∈ V | |
6 | iscllaw 45383 | . . . . . 6 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) | |
7 | 4, 5, 6 | mp2an 689 | . . . . 5 ⊢ ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
8 | 1, 2 | ismgm 18327 | . . . . . 6 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
9 | 8 | biimprd 247 | . . . . 5 ⊢ (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm)) |
10 | 7, 9 | syl5bi 241 | . . . 4 ⊢ (𝑀 ∈ MgmALT → ((+g‘𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm)) |
11 | 3, 10 | sylbid 239 | . . 3 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)) |
12 | 11 | pm2.43i 52 | . 2 ⊢ (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm) |
13 | mgmplusgiopALT 45388 | . . 3 ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) | |
14 | 1, 2 | ismgmALT 45417 | . . 3 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
15 | 13, 14 | mpbird 256 | . 2 ⊢ (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT) |
16 | 12, 15 | impbii 208 | 1 ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mgmcmgm 18324 clLaw ccllaw 45377 MgmALTcmgm2 45409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 df-ov 7278 df-mgm 18326 df-cllaw 45380 df-mgm2 45413 |
This theorem is referenced by: sgrp2sgrp 45422 |
Copyright terms: Public domain | W3C validator |