| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgm2mgm | Structured version Visualization version GIF version | ||
| Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgm2mgm | ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | 1, 2 | ismgmALT 48165 | . . . 4 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
| 4 | fvex 6894 | . . . . . 6 ⊢ (+g‘𝑀) ∈ V | |
| 5 | fvex 6894 | . . . . . 6 ⊢ (Base‘𝑀) ∈ V | |
| 6 | iscllaw 48131 | . . . . . 6 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . 5 ⊢ ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
| 8 | 1, 2 | ismgm 18624 | . . . . . 6 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
| 9 | 8 | biimprd 248 | . . . . 5 ⊢ (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm)) |
| 10 | 7, 9 | biimtrid 242 | . . . 4 ⊢ (𝑀 ∈ MgmALT → ((+g‘𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm)) |
| 11 | 3, 10 | sylbid 240 | . . 3 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)) |
| 12 | 11 | pm2.43i 52 | . 2 ⊢ (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm) |
| 13 | mgmplusgiopALT 48136 | . . 3 ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) | |
| 14 | 1, 2 | ismgmALT 48165 | . . 3 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
| 15 | 13, 14 | mpbird 257 | . 2 ⊢ (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT) |
| 16 | 12, 15 | impbii 209 | 1 ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Mgmcmgm 18621 clLaw ccllaw 48125 MgmALTcmgm2 48157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-iota 6489 df-fv 6544 df-ov 7413 df-mgm 18623 df-cllaw 48128 df-mgm2 48161 |
| This theorem is referenced by: sgrp2sgrp 48170 |
| Copyright terms: Public domain | W3C validator |