![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgm2mgm | Structured version Visualization version GIF version |
Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.) |
Ref | Expression |
---|---|
mgm2mgm | ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2726 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | ismgmALT 47155 | . . . 4 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
4 | fvex 6897 | . . . . . 6 ⊢ (+g‘𝑀) ∈ V | |
5 | fvex 6897 | . . . . . 6 ⊢ (Base‘𝑀) ∈ V | |
6 | iscllaw 47121 | . . . . . 6 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) | |
7 | 4, 5, 6 | mp2an 689 | . . . . 5 ⊢ ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
8 | 1, 2 | ismgm 18571 | . . . . . 6 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
9 | 8 | biimprd 247 | . . . . 5 ⊢ (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm)) |
10 | 7, 9 | biimtrid 241 | . . . 4 ⊢ (𝑀 ∈ MgmALT → ((+g‘𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm)) |
11 | 3, 10 | sylbid 239 | . . 3 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)) |
12 | 11 | pm2.43i 52 | . 2 ⊢ (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm) |
13 | mgmplusgiopALT 47126 | . . 3 ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) | |
14 | 1, 2 | ismgmALT 47155 | . . 3 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
15 | 13, 14 | mpbird 257 | . 2 ⊢ (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT) |
16 | 12, 15 | impbii 208 | 1 ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 Mgmcmgm 18568 clLaw ccllaw 47115 MgmALTcmgm2 47147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-iota 6488 df-fv 6544 df-ov 7407 df-mgm 18570 df-cllaw 47118 df-mgm2 47151 |
This theorem is referenced by: sgrp2sgrp 47160 |
Copyright terms: Public domain | W3C validator |