Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgm2mgm Structured version   Visualization version   GIF version

Theorem mgm2mgm 46627
Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
mgm2mgm (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)

Proof of Theorem mgm2mgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2732 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2ismgmALT 46623 . . . 4 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
4 fvex 6904 . . . . . 6 (+g𝑀) ∈ V
5 fvex 6904 . . . . . 6 (Base‘𝑀) ∈ V
6 iscllaw 46589 . . . . . 6 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
74, 5, 6mp2an 690 . . . . 5 ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
81, 2ismgm 18561 . . . . . 6 (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
98biimprd 247 . . . . 5 (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm))
107, 9biimtrid 241 . . . 4 (𝑀 ∈ MgmALT → ((+g𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm))
113, 10sylbid 239 . . 3 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm))
1211pm2.43i 52 . 2 (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)
13 mgmplusgiopALT 46594 . . 3 (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))
141, 2ismgmALT 46623 . . 3 (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
1513, 14mpbird 256 . 2 (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT)
1612, 15impbii 208 1 (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  wral 3061  Vcvv 3474   class class class wbr 5148  cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  Mgmcmgm 18558   clLaw ccllaw 46583  MgmALTcmgm2 46615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-iota 6495  df-fv 6551  df-ov 7411  df-mgm 18560  df-cllaw 46586  df-mgm2 46619
This theorem is referenced by:  sgrp2sgrp  46628
  Copyright terms: Public domain W3C validator