Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgm2mgm Structured version   Visualization version   GIF version

Theorem mgm2mgm 45309
Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
mgm2mgm (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)

Proof of Theorem mgm2mgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2ismgmALT 45305 . . . 4 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
4 fvex 6769 . . . . . 6 (+g𝑀) ∈ V
5 fvex 6769 . . . . . 6 (Base‘𝑀) ∈ V
6 iscllaw 45271 . . . . . 6 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
74, 5, 6mp2an 688 . . . . 5 ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
81, 2ismgm 18242 . . . . . 6 (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
98biimprd 247 . . . . 5 (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm))
107, 9syl5bi 241 . . . 4 (𝑀 ∈ MgmALT → ((+g𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm))
113, 10sylbid 239 . . 3 (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm))
1211pm2.43i 52 . 2 (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)
13 mgmplusgiopALT 45276 . . 3 (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))
141, 2ismgmALT 45305 . . 3 (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g𝑀) clLaw (Base‘𝑀)))
1513, 14mpbird 256 . 2 (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT)
1612, 15impbii 208 1 (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  wral 3063  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Mgmcmgm 18239   clLaw ccllaw 45265  MgmALTcmgm2 45297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-iota 6376  df-fv 6426  df-ov 7258  df-mgm 18241  df-cllaw 45268  df-mgm2 45301
This theorem is referenced by:  sgrp2sgrp  45310
  Copyright terms: Public domain W3C validator