![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgm2mgm | Structured version Visualization version GIF version |
Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.) |
Ref | Expression |
---|---|
mgm2mgm | ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2732 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | ismgmALT 46623 | . . . 4 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
4 | fvex 6904 | . . . . . 6 ⊢ (+g‘𝑀) ∈ V | |
5 | fvex 6904 | . . . . . 6 ⊢ (Base‘𝑀) ∈ V | |
6 | iscllaw 46589 | . . . . . 6 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) | |
7 | 4, 5, 6 | mp2an 690 | . . . . 5 ⊢ ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
8 | 1, 2 | ismgm 18561 | . . . . . 6 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
9 | 8 | biimprd 247 | . . . . 5 ⊢ (𝑀 ∈ MgmALT → (∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀) → 𝑀 ∈ Mgm)) |
10 | 7, 9 | biimtrid 241 | . . . 4 ⊢ (𝑀 ∈ MgmALT → ((+g‘𝑀) clLaw (Base‘𝑀) → 𝑀 ∈ Mgm)) |
11 | 3, 10 | sylbid 239 | . . 3 ⊢ (𝑀 ∈ MgmALT → (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm)) |
12 | 11 | pm2.43i 52 | . 2 ⊢ (𝑀 ∈ MgmALT → 𝑀 ∈ Mgm) |
13 | mgmplusgiopALT 46594 | . . 3 ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) | |
14 | 1, 2 | ismgmALT 46623 | . . 3 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ MgmALT ↔ (+g‘𝑀) clLaw (Base‘𝑀))) |
15 | 13, 14 | mpbird 256 | . 2 ⊢ (𝑀 ∈ Mgm → 𝑀 ∈ MgmALT) |
16 | 12, 15 | impbii 208 | 1 ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Mgmcmgm 18558 clLaw ccllaw 46583 MgmALTcmgm2 46615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-iota 6495 df-fv 6551 df-ov 7411 df-mgm 18560 df-cllaw 46586 df-mgm2 46619 |
This theorem is referenced by: sgrp2sgrp 46628 |
Copyright terms: Public domain | W3C validator |