| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isomliN | Structured version Visualization version GIF version | ||
| Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isomli.0 | ⊢ 𝐾 ∈ OL |
| isomli.b | ⊢ 𝐵 = (Base‘𝐾) |
| isomli.l | ⊢ ≤ = (le‘𝐾) |
| isomli.j | ⊢ ∨ = (join‘𝐾) |
| isomli.m | ⊢ ∧ = (meet‘𝐾) |
| isomli.o | ⊢ ⊥ = (oc‘𝐾) |
| isomli.7 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) |
| Ref | Expression |
|---|---|
| isomliN | ⊢ 𝐾 ∈ OML |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isomli.0 | . 2 ⊢ 𝐾 ∈ OL | |
| 2 | isomli.7 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) | |
| 3 | 2 | rgen2 3186 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) |
| 4 | isomli.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | isomli.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 6 | isomli.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | isomli.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 8 | isomli.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | isoml 39198 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) |
| 10 | 1, 3, 9 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ OML |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 lecple 17280 occoc 17281 joincjn 18327 meetcmee 18328 OLcol 39134 OMLcoml 39135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-oml 39139 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |