Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomliN | Structured version Visualization version GIF version |
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isomli.0 | ⊢ 𝐾 ∈ OL |
isomli.b | ⊢ 𝐵 = (Base‘𝐾) |
isomli.l | ⊢ ≤ = (le‘𝐾) |
isomli.j | ⊢ ∨ = (join‘𝐾) |
isomli.m | ⊢ ∧ = (meet‘𝐾) |
isomli.o | ⊢ ⊥ = (oc‘𝐾) |
isomli.7 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) |
Ref | Expression |
---|---|
isomliN | ⊢ 𝐾 ∈ OML |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomli.0 | . 2 ⊢ 𝐾 ∈ OL | |
2 | isomli.7 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) | |
3 | 2 | rgen2 3126 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) |
4 | isomli.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
5 | isomli.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | isomli.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | isomli.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
8 | isomli.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
9 | 4, 5, 6, 7, 8 | isoml 37179 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) |
10 | 1, 3, 9 | mpbir2an 707 | 1 ⊢ 𝐾 ∈ OML |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 occoc 16896 joincjn 17944 meetcmee 17945 OLcol 37115 OMLcoml 37116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-oml 37120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |