Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomliN Structured version   Visualization version   GIF version

Theorem isomliN 39235
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
isomli.0 𝐾 ∈ OL
isomli.b 𝐵 = (Base‘𝐾)
isomli.l = (le‘𝐾)
isomli.j = (join‘𝐾)
isomli.m = (meet‘𝐾)
isomli.o = (oc‘𝐾)
isomli.7 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
Assertion
Ref Expression
isomliN 𝐾 ∈ OML
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isomliN
StepHypRef Expression
1 isomli.0 . 2 𝐾 ∈ OL
2 isomli.7 . . 3 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
32rgen2 3199 . 2 𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))
4 isomli.b . . 3 𝐵 = (Base‘𝐾)
5 isomli.l . . 3 = (le‘𝐾)
6 isomli.j . . 3 = (join‘𝐾)
7 isomli.m . . 3 = (meet‘𝐾)
8 isomli.o . . 3 = (oc‘𝐾)
94, 5, 6, 7, 8isoml 39234 . 2 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
101, 3, 9mpbir2an 711 1 𝐾 ∈ OML
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3061   class class class wbr 5151  cfv 6569  (class class class)co 7438  Basecbs 17254  lecple 17314  occoc 17315  joincjn 18378  meetcmee 18379  OLcol 39170  OMLcoml 39171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441  df-oml 39175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator