| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isomliN | Structured version Visualization version GIF version | ||
| Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isomli.0 | ⊢ 𝐾 ∈ OL |
| isomli.b | ⊢ 𝐵 = (Base‘𝐾) |
| isomli.l | ⊢ ≤ = (le‘𝐾) |
| isomli.j | ⊢ ∨ = (join‘𝐾) |
| isomli.m | ⊢ ∧ = (meet‘𝐾) |
| isomli.o | ⊢ ⊥ = (oc‘𝐾) |
| isomli.7 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) |
| Ref | Expression |
|---|---|
| isomliN | ⊢ 𝐾 ∈ OML |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isomli.0 | . 2 ⊢ 𝐾 ∈ OL | |
| 2 | isomli.7 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) | |
| 3 | 2 | rgen2 3170 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) |
| 4 | isomli.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | isomli.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 6 | isomli.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 7 | isomli.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 8 | isomli.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | isoml 39256 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) |
| 10 | 1, 3, 9 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ OML |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 lecple 17160 occoc 17161 joincjn 18209 meetcmee 18210 OLcol 39192 OMLcoml 39193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-oml 39197 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |