![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomliN | Structured version Visualization version GIF version |
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isomli.0 | β’ πΎ β OL |
isomli.b | β’ π΅ = (BaseβπΎ) |
isomli.l | β’ β€ = (leβπΎ) |
isomli.j | β’ β¨ = (joinβπΎ) |
isomli.m | β’ β§ = (meetβπΎ) |
isomli.o | β’ β₯ = (ocβπΎ) |
isomli.7 | β’ ((π₯ β π΅ β§ π¦ β π΅) β (π₯ β€ π¦ β π¦ = (π₯ β¨ (π¦ β§ ( β₯ βπ₯))))) |
Ref | Expression |
---|---|
isomliN | β’ πΎ β OML |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomli.0 | . 2 β’ πΎ β OL | |
2 | isomli.7 | . . 3 β’ ((π₯ β π΅ β§ π¦ β π΅) β (π₯ β€ π¦ β π¦ = (π₯ β¨ (π¦ β§ ( β₯ βπ₯))))) | |
3 | 2 | rgen2 3197 | . 2 β’ βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β π¦ = (π₯ β¨ (π¦ β§ ( β₯ βπ₯)))) |
4 | isomli.b | . . 3 β’ π΅ = (BaseβπΎ) | |
5 | isomli.l | . . 3 β’ β€ = (leβπΎ) | |
6 | isomli.j | . . 3 β’ β¨ = (joinβπΎ) | |
7 | isomli.m | . . 3 β’ β§ = (meetβπΎ) | |
8 | isomli.o | . . 3 β’ β₯ = (ocβπΎ) | |
9 | 4, 5, 6, 7, 8 | isoml 38103 | . 2 β’ (πΎ β OML β (πΎ β OL β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β π¦ = (π₯ β¨ (π¦ β§ ( β₯ βπ₯)))))) |
10 | 1, 3, 9 | mpbir2an 709 | 1 β’ πΎ β OML |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5148 βcfv 6543 (class class class)co 7408 Basecbs 17143 lecple 17203 occoc 17204 joincjn 18263 meetcmee 18264 OLcol 38039 OMLcoml 38040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-oml 38044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |