Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomliN | Structured version Visualization version GIF version |
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isomli.0 | ⊢ 𝐾 ∈ OL |
isomli.b | ⊢ 𝐵 = (Base‘𝐾) |
isomli.l | ⊢ ≤ = (le‘𝐾) |
isomli.j | ⊢ ∨ = (join‘𝐾) |
isomli.m | ⊢ ∧ = (meet‘𝐾) |
isomli.o | ⊢ ⊥ = (oc‘𝐾) |
isomli.7 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) |
Ref | Expression |
---|---|
isomliN | ⊢ 𝐾 ∈ OML |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomli.0 | . 2 ⊢ 𝐾 ∈ OL | |
2 | isomli.7 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) | |
3 | 2 | rgen2 3191 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) |
4 | isomli.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
5 | isomli.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | isomli.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | isomli.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
8 | isomli.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
9 | 4, 5, 6, 7, 8 | isoml 37554 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) |
10 | 1, 3, 9 | mpbir2an 709 | 1 ⊢ 𝐾 ∈ OML |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 lecple 17067 occoc 17068 joincjn 18127 meetcmee 18128 OLcol 37490 OMLcoml 37491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-iota 6436 df-fv 6492 df-ov 7345 df-oml 37495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |