Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomliN Structured version   Visualization version   GIF version

Theorem isomliN 39257
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
isomli.0 𝐾 ∈ OL
isomli.b 𝐵 = (Base‘𝐾)
isomli.l = (le‘𝐾)
isomli.j = (join‘𝐾)
isomli.m = (meet‘𝐾)
isomli.o = (oc‘𝐾)
isomli.7 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
Assertion
Ref Expression
isomliN 𝐾 ∈ OML
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isomliN
StepHypRef Expression
1 isomli.0 . 2 𝐾 ∈ OL
2 isomli.7 . . 3 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
32rgen2 3170 . 2 𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))
4 isomli.b . . 3 𝐵 = (Base‘𝐾)
5 isomli.l . . 3 = (le‘𝐾)
6 isomli.j . . 3 = (join‘𝐾)
7 isomli.m . . 3 = (meet‘𝐾)
8 isomli.o . . 3 = (oc‘𝐾)
94, 5, 6, 7, 8isoml 39256 . 2 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
101, 3, 9mpbir2an 711 1 𝐾 ∈ OML
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wral 3045   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  lecple 17160  occoc 17161  joincjn 18209  meetcmee 18210  OLcol 39192  OMLcoml 39193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-ov 7344  df-oml 39197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator