Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omlol | Structured version Visualization version GIF version |
Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
omlol | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2736 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2736 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2736 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2736 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isoml 37498 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 → 𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥)))))) |
7 | 6 | simplbi 498 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3061 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 lecple 17058 occoc 17059 joincjn 18118 meetcmee 18119 OLcol 37434 OMLcoml 37435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-oml 37439 |
This theorem is referenced by: omlop 37501 omllat 37502 omllaw3 37505 omllaw4 37506 cmtcomlemN 37508 cmtbr2N 37513 cmtbr3N 37514 omlfh1N 37518 omlfh3N 37519 omlspjN 37521 hlol 37621 |
Copyright terms: Public domain | W3C validator |