Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlol Structured version   Visualization version   GIF version

Theorem omlol 37181
Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
omlol (𝐾 ∈ OML → 𝐾 ∈ OL)

Proof of Theorem omlol
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2738 . . 3 (join‘𝐾) = (join‘𝐾)
4 eqid 2738 . . 3 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2738 . . 3 (oc‘𝐾) = (oc‘𝐾)
61, 2, 3, 4, 5isoml 37179 . 2 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥))))))
76simplbi 497 1 (𝐾 ∈ OML → 𝐾 ∈ OL)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  joincjn 17944  meetcmee 17945  OLcol 37115  OMLcoml 37116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-oml 37120
This theorem is referenced by:  omlop  37182  omllat  37183  omllaw3  37186  omllaw4  37187  cmtcomlemN  37189  cmtbr2N  37194  cmtbr3N  37195  omlfh1N  37199  omlfh3N  37200  omlspjN  37202  hlol  37302
  Copyright terms: Public domain W3C validator