Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlol Structured version   Visualization version   GIF version

Theorem omlol 39226
Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
omlol (𝐾 ∈ OML → 𝐾 ∈ OL)

Proof of Theorem omlol
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2729 . . 3 (join‘𝐾) = (join‘𝐾)
4 eqid 2729 . . 3 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2729 . . 3 (oc‘𝐾) = (oc‘𝐾)
61, 2, 3, 4, 5isoml 39224 . 2 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥))))))
76simplbi 497 1 (𝐾 ∈ OML → 𝐾 ∈ OL)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  occoc 17204  joincjn 18252  meetcmee 18253  OLcol 39160  OMLcoml 39161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-oml 39165
This theorem is referenced by:  omlop  39227  omllat  39228  omllaw3  39231  omllaw4  39232  cmtcomlemN  39234  cmtbr2N  39239  cmtbr3N  39240  omlfh1N  39244  omlfh3N  39245  omlspjN  39247  hlol  39347
  Copyright terms: Public domain W3C validator