Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omlol | Structured version Visualization version GIF version |
Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
omlol | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isoml 37179 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 → 𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥)))))) |
7 | 6 | simplbi 497 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 occoc 16896 joincjn 17944 meetcmee 17945 OLcol 37115 OMLcoml 37116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-oml 37120 |
This theorem is referenced by: omlop 37182 omllat 37183 omllaw3 37186 omllaw4 37187 cmtcomlemN 37189 cmtbr2N 37194 cmtbr3N 37195 omlfh1N 37199 omlfh3N 37200 omlspjN 37202 hlol 37302 |
Copyright terms: Public domain | W3C validator |