Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlol Structured version   Visualization version   GIF version

Theorem omlol 37500
Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
omlol (𝐾 ∈ OML → 𝐾 ∈ OL)

Proof of Theorem omlol
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2736 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2736 . . 3 (join‘𝐾) = (join‘𝐾)
4 eqid 2736 . . 3 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2736 . . 3 (oc‘𝐾) = (oc‘𝐾)
61, 2, 3, 4, 5isoml 37498 . 2 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥))))))
76simplbi 498 1 (𝐾 ∈ OML → 𝐾 ∈ OL)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wral 3061   class class class wbr 5089  cfv 6473  (class class class)co 7329  Basecbs 17001  lecple 17058  occoc 17059  joincjn 18118  meetcmee 18119  OLcol 37434  OMLcoml 37435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-iota 6425  df-fv 6481  df-ov 7332  df-oml 37439
This theorem is referenced by:  omlop  37501  omllat  37502  omllaw3  37505  omllaw4  37506  cmtcomlemN  37508  cmtbr2N  37513  cmtbr3N  37514  omlfh1N  37518  omlfh3N  37519  omlspjN  37521  hlol  37621
  Copyright terms: Public domain W3C validator