| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlol | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| omlol | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | eqid 2731 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isoml 39343 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 → 𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥)))))) |
| 7 | 6 | simplbi 497 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 lecple 17174 occoc 17175 joincjn 18223 meetcmee 18224 OLcol 39279 OMLcoml 39280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6443 df-fv 6495 df-ov 7355 df-oml 39284 |
| This theorem is referenced by: omlop 39346 omllat 39347 omllaw3 39350 omllaw4 39351 cmtcomlemN 39353 cmtbr2N 39358 cmtbr3N 39359 omlfh1N 39363 omlfh3N 39364 omlspjN 39366 hlol 39466 |
| Copyright terms: Public domain | W3C validator |