Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omlol | Structured version Visualization version GIF version |
Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
omlol | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isoml 37252 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 → 𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥)))))) |
7 | 6 | simplbi 498 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 occoc 16970 joincjn 18029 meetcmee 18030 OLcol 37188 OMLcoml 37189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-oml 37193 |
This theorem is referenced by: omlop 37255 omllat 37256 omllaw3 37259 omllaw4 37260 cmtcomlemN 37262 cmtbr2N 37267 cmtbr3N 37268 omlfh1N 37272 omlfh3N 37273 omlspjN 37275 hlol 37375 |
Copyright terms: Public domain | W3C validator |