| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlol | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| omlol | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2730 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2730 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | eqid 2730 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isoml 39256 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 → 𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥)))))) |
| 7 | 6 | simplbi 497 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∀wral 3045 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 lecple 17160 occoc 17161 joincjn 18209 meetcmee 18210 OLcol 39192 OMLcoml 39193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-oml 39197 |
| This theorem is referenced by: omlop 39259 omllat 39260 omllaw3 39263 omllaw4 39264 cmtcomlemN 39266 cmtbr2N 39271 cmtbr3N 39272 omlfh1N 39276 omlfh3N 39277 omlspjN 39279 hlol 39379 |
| Copyright terms: Public domain | W3C validator |