| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlol | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| omlol | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2736 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2736 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2736 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | eqid 2736 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isoml 39261 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 → 𝑦 = (𝑥(join‘𝐾)(𝑦(meet‘𝐾)((oc‘𝐾)‘𝑥)))))) |
| 7 | 6 | simplbi 497 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 occoc 17284 joincjn 18328 meetcmee 18329 OLcol 39197 OMLcoml 39198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-oml 39202 |
| This theorem is referenced by: omlop 39264 omllat 39265 omllaw3 39268 omllaw4 39269 cmtcomlemN 39271 cmtbr2N 39276 cmtbr3N 39277 omlfh1N 39281 omlfh3N 39282 omlspjN 39284 hlol 39384 |
| Copyright terms: Public domain | W3C validator |