Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoml Structured version   Visualization version   GIF version

Theorem isoml 39231
Description: The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
isoml.b 𝐵 = (Base‘𝐾)
isoml.l = (le‘𝐾)
isoml.j = (join‘𝐾)
isoml.m = (meet‘𝐾)
isoml.o = (oc‘𝐾)
Assertion
Ref Expression
isoml (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isoml
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isoml.b . . . 4 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2782 . . 3 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6858 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 isoml.l . . . . . . 7 = (le‘𝐾)
64, 5eqtr4di 2782 . . . . . 6 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5118 . . . . 5 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑦𝑥 𝑦))
8 fveq2 6858 . . . . . . . 8 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 isoml.j . . . . . . . 8 = (join‘𝐾)
108, 9eqtr4di 2782 . . . . . . 7 (𝑘 = 𝐾 → (join‘𝑘) = )
11 eqidd 2730 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
12 fveq2 6858 . . . . . . . . 9 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
13 isoml.m . . . . . . . . 9 = (meet‘𝐾)
1412, 13eqtr4di 2782 . . . . . . . 8 (𝑘 = 𝐾 → (meet‘𝑘) = )
15 eqidd 2730 . . . . . . . 8 (𝑘 = 𝐾𝑦 = 𝑦)
16 fveq2 6858 . . . . . . . . . 10 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
17 isoml.o . . . . . . . . . 10 = (oc‘𝐾)
1816, 17eqtr4di 2782 . . . . . . . . 9 (𝑘 = 𝐾 → (oc‘𝑘) = )
1918fveq1d 6860 . . . . . . . 8 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑥) = ( 𝑥))
2014, 15, 19oveq123d 7408 . . . . . . 7 (𝑘 = 𝐾 → (𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)) = (𝑦 ( 𝑥)))
2110, 11, 20oveq123d 7408 . . . . . 6 (𝑘 = 𝐾 → (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))) = (𝑥 (𝑦 ( 𝑥))))
2221eqeq2d 2740 . . . . 5 (𝑘 = 𝐾 → (𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))) ↔ 𝑦 = (𝑥 (𝑦 ( 𝑥)))))
237, 22imbi12d 344 . . . 4 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
243, 23raleqbidv 3319 . . 3 (𝑘 = 𝐾 → (∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ ∀𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
253, 24raleqbidv 3319 . 2 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
26 df-oml 39172 . 2 OML = {𝑘 ∈ OL ∣ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))))}
2725, 26elrab2 3662 1 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  occoc 17228  joincjn 18272  meetcmee 18273  OLcol 39167  OMLcoml 39168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-oml 39172
This theorem is referenced by:  isomliN  39232  omlol  39233  omllaw  39236
  Copyright terms: Public domain W3C validator