Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoml Structured version   Visualization version   GIF version

Theorem isoml 39357
Description: The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
isoml.b 𝐵 = (Base‘𝐾)
isoml.l = (le‘𝐾)
isoml.j = (join‘𝐾)
isoml.m = (meet‘𝐾)
isoml.o = (oc‘𝐾)
Assertion
Ref Expression
isoml (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isoml
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . 4 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isoml.b . . . 4 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2786 . . 3 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6828 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 isoml.l . . . . . . 7 = (le‘𝐾)
64, 5eqtr4di 2786 . . . . . 6 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5104 . . . . 5 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑦𝑥 𝑦))
8 fveq2 6828 . . . . . . . 8 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 isoml.j . . . . . . . 8 = (join‘𝐾)
108, 9eqtr4di 2786 . . . . . . 7 (𝑘 = 𝐾 → (join‘𝑘) = )
11 eqidd 2734 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
12 fveq2 6828 . . . . . . . . 9 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
13 isoml.m . . . . . . . . 9 = (meet‘𝐾)
1412, 13eqtr4di 2786 . . . . . . . 8 (𝑘 = 𝐾 → (meet‘𝑘) = )
15 eqidd 2734 . . . . . . . 8 (𝑘 = 𝐾𝑦 = 𝑦)
16 fveq2 6828 . . . . . . . . . 10 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
17 isoml.o . . . . . . . . . 10 = (oc‘𝐾)
1816, 17eqtr4di 2786 . . . . . . . . 9 (𝑘 = 𝐾 → (oc‘𝑘) = )
1918fveq1d 6830 . . . . . . . 8 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑥) = ( 𝑥))
2014, 15, 19oveq123d 7373 . . . . . . 7 (𝑘 = 𝐾 → (𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)) = (𝑦 ( 𝑥)))
2110, 11, 20oveq123d 7373 . . . . . 6 (𝑘 = 𝐾 → (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))) = (𝑥 (𝑦 ( 𝑥))))
2221eqeq2d 2744 . . . . 5 (𝑘 = 𝐾 → (𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))) ↔ 𝑦 = (𝑥 (𝑦 ( 𝑥)))))
237, 22imbi12d 344 . . . 4 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
243, 23raleqbidv 3313 . . 3 (𝑘 = 𝐾 → (∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ ∀𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
253, 24raleqbidv 3313 . 2 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
26 df-oml 39298 . 2 OML = {𝑘 ∈ OL ∣ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))))}
2725, 26elrab2 3646 1 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  occoc 17171  joincjn 18219  meetcmee 18220  OLcol 39293  OMLcoml 39294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-oml 39298
This theorem is referenced by:  isomliN  39358  omlol  39359  omllaw  39362
  Copyright terms: Public domain W3C validator