Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoml Structured version   Visualization version   GIF version

Theorem isoml 36378
Description: The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
isoml.b 𝐵 = (Base‘𝐾)
isoml.l = (le‘𝐾)
isoml.j = (join‘𝐾)
isoml.m = (meet‘𝐾)
isoml.o = (oc‘𝐾)
Assertion
Ref Expression
isoml (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isoml
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6673 . . . 4 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isoml.b . . . 4 𝐵 = (Base‘𝐾)
31, 2syl6eqr 2877 . . 3 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6673 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 isoml.l . . . . . . 7 = (le‘𝐾)
64, 5syl6eqr 2877 . . . . . 6 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5080 . . . . 5 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑦𝑥 𝑦))
8 fveq2 6673 . . . . . . . 8 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 isoml.j . . . . . . . 8 = (join‘𝐾)
108, 9syl6eqr 2877 . . . . . . 7 (𝑘 = 𝐾 → (join‘𝑘) = )
11 eqidd 2825 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
12 fveq2 6673 . . . . . . . . 9 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
13 isoml.m . . . . . . . . 9 = (meet‘𝐾)
1412, 13syl6eqr 2877 . . . . . . . 8 (𝑘 = 𝐾 → (meet‘𝑘) = )
15 eqidd 2825 . . . . . . . 8 (𝑘 = 𝐾𝑦 = 𝑦)
16 fveq2 6673 . . . . . . . . . 10 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
17 isoml.o . . . . . . . . . 10 = (oc‘𝐾)
1816, 17syl6eqr 2877 . . . . . . . . 9 (𝑘 = 𝐾 → (oc‘𝑘) = )
1918fveq1d 6675 . . . . . . . 8 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑥) = ( 𝑥))
2014, 15, 19oveq123d 7180 . . . . . . 7 (𝑘 = 𝐾 → (𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)) = (𝑦 ( 𝑥)))
2110, 11, 20oveq123d 7180 . . . . . 6 (𝑘 = 𝐾 → (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))) = (𝑥 (𝑦 ( 𝑥))))
2221eqeq2d 2835 . . . . 5 (𝑘 = 𝐾 → (𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))) ↔ 𝑦 = (𝑥 (𝑦 ( 𝑥)))))
237, 22imbi12d 347 . . . 4 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
243, 23raleqbidv 3404 . . 3 (𝑘 = 𝐾 → (∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ ∀𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
253, 24raleqbidv 3404 . 2 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥)))) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
26 df-oml 36319 . 2 OML = {𝑘 ∈ OL ∣ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦𝑦 = (𝑥(join‘𝑘)(𝑦(meet‘𝑘)((oc‘𝑘)‘𝑥))))}
2725, 26elrab2 3686 1 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  occoc 16576  joincjn 17557  meetcmee 17558  OLcol 36314  OMLcoml 36315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-ov 7162  df-oml 36319
This theorem is referenced by:  isomliN  36379  omlol  36380  omllaw  36383
  Copyright terms: Public domain W3C validator