MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refun0 Structured version   Visualization version   GIF version

Theorem refun0 22666
Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
refun0 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)

Proof of Theorem refun0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 𝐴 = 𝐴
2 eqid 2738 . . . 4 𝐵 = 𝐵
31, 2refbas 22661 . . 3 (𝐴Ref𝐵 𝐵 = 𝐴)
43adantr 481 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → 𝐵 = 𝐴)
5 elun 4083 . . . 4 (𝑥 ∈ (𝐴 ∪ {∅}) ↔ (𝑥𝐴𝑥 ∈ {∅}))
6 refssex 22662 . . . . . 6 ((𝐴Ref𝐵𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
76adantlr 712 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
8 0ss 4330 . . . . . . . . 9 ∅ ⊆ 𝑦
98a1i 11 . . . . . . . 8 ((𝐴Ref𝐵𝑦𝐵) → ∅ ⊆ 𝑦)
109reximdva0 4285 . . . . . . 7 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
1110adantr 481 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
12 elsni 4578 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
13 sseq1 3946 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ⊆ 𝑦))
1413rexbidv 3226 . . . . . . . 8 (𝑥 = ∅ → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1512, 14syl 17 . . . . . . 7 (𝑥 ∈ {∅} → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1615adantl 482 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1711, 16mpbird 256 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 𝑥𝑦)
187, 17jaodan 955 . . . 4 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥 ∈ {∅})) → ∃𝑦𝐵 𝑥𝑦)
195, 18sylan2b 594 . . 3 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {∅})) → ∃𝑦𝐵 𝑥𝑦)
2019ralrimiva 3103 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)
21 refrel 22659 . . . . . 6 Rel Ref
2221brrelex1i 5643 . . . . 5 (𝐴Ref𝐵𝐴 ∈ V)
23 p0ex 5307 . . . . 5 {∅} ∈ V
24 unexg 7599 . . . . 5 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ∪ {∅}) ∈ V)
2522, 23, 24sylancl 586 . . . 4 (𝐴Ref𝐵 → (𝐴 ∪ {∅}) ∈ V)
26 uniun 4864 . . . . . 6 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
27 0ex 5231 . . . . . . . 8 ∅ ∈ V
2827unisn 4861 . . . . . . 7 {∅} = ∅
2928uneq2i 4094 . . . . . 6 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
30 un0 4324 . . . . . 6 ( 𝐴 ∪ ∅) = 𝐴
3126, 29, 303eqtrri 2771 . . . . 5 𝐴 = (𝐴 ∪ {∅})
3231, 2isref 22660 . . . 4 ((𝐴 ∪ {∅}) ∈ V → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3325, 32syl 17 . . 3 (𝐴Ref𝐵 → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3433adantr 481 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
354, 20, 34mpbir2and 710 1 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cun 3885  wss 3887  c0 4256  {csn 4561   cuni 4839   class class class wbr 5074  Refcref 22653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-ref 22656
This theorem is referenced by:  locfinref  31791
  Copyright terms: Public domain W3C validator