MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refun0 Structured version   Visualization version   GIF version

Theorem refun0 22866
Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
refun0 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)

Proof of Theorem refun0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 𝐴 = 𝐴
2 eqid 2736 . . . 4 𝐵 = 𝐵
31, 2refbas 22861 . . 3 (𝐴Ref𝐵 𝐵 = 𝐴)
43adantr 481 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → 𝐵 = 𝐴)
5 elun 4108 . . . 4 (𝑥 ∈ (𝐴 ∪ {∅}) ↔ (𝑥𝐴𝑥 ∈ {∅}))
6 refssex 22862 . . . . . 6 ((𝐴Ref𝐵𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
76adantlr 713 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
8 0ss 4356 . . . . . . . . 9 ∅ ⊆ 𝑦
98a1i 11 . . . . . . . 8 ((𝐴Ref𝐵𝑦𝐵) → ∅ ⊆ 𝑦)
109reximdva0 4311 . . . . . . 7 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
1110adantr 481 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
12 elsni 4603 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
13 sseq1 3969 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ⊆ 𝑦))
1413rexbidv 3175 . . . . . . . 8 (𝑥 = ∅ → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1512, 14syl 17 . . . . . . 7 (𝑥 ∈ {∅} → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1615adantl 482 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1711, 16mpbird 256 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 𝑥𝑦)
187, 17jaodan 956 . . . 4 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥 ∈ {∅})) → ∃𝑦𝐵 𝑥𝑦)
195, 18sylan2b 594 . . 3 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {∅})) → ∃𝑦𝐵 𝑥𝑦)
2019ralrimiva 3143 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)
21 refrel 22859 . . . . . 6 Rel Ref
2221brrelex1i 5688 . . . . 5 (𝐴Ref𝐵𝐴 ∈ V)
23 p0ex 5339 . . . . 5 {∅} ∈ V
24 unexg 7683 . . . . 5 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ∪ {∅}) ∈ V)
2522, 23, 24sylancl 586 . . . 4 (𝐴Ref𝐵 → (𝐴 ∪ {∅}) ∈ V)
26 uniun 4891 . . . . . 6 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
27 0ex 5264 . . . . . . . 8 ∅ ∈ V
2827unisn 4887 . . . . . . 7 {∅} = ∅
2928uneq2i 4120 . . . . . 6 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
30 un0 4350 . . . . . 6 ( 𝐴 ∪ ∅) = 𝐴
3126, 29, 303eqtrri 2769 . . . . 5 𝐴 = (𝐴 ∪ {∅})
3231, 2isref 22860 . . . 4 ((𝐴 ∪ {∅}) ∈ V → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3325, 32syl 17 . . 3 (𝐴Ref𝐵 → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3433adantr 481 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
354, 20, 34mpbir2and 711 1 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cun 3908  wss 3910  c0 4282  {csn 4586   cuni 4865   class class class wbr 5105  Refcref 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-xp 5639  df-rel 5640  df-ref 22856
This theorem is referenced by:  locfinref  32422
  Copyright terms: Public domain W3C validator