Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐴 =
∪ 𝐴 |
2 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐵 =
∪ 𝐵 |
3 | 1, 2 | refbas 22569 |
. . 3
⊢ (𝐴Ref𝐵 → ∪ 𝐵 = ∪
𝐴) |
4 | 3 | adantr 480 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ∪ 𝐵 =
∪ 𝐴) |
5 | | elun 4079 |
. . . 4
⊢ (𝑥 ∈ (𝐴 ∪ {∅}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {∅})) |
6 | | refssex 22570 |
. . . . . 6
⊢ ((𝐴Ref𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
7 | 6 | adantlr 711 |
. . . . 5
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
8 | | 0ss 4327 |
. . . . . . . . 9
⊢ ∅
⊆ 𝑦 |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴Ref𝐵 ∧ 𝑦 ∈ 𝐵) → ∅ ⊆ 𝑦) |
10 | 9 | reximdva0 4282 |
. . . . . . 7
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦) |
11 | 10 | adantr 480 |
. . . . . 6
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦) |
12 | | elsni 4575 |
. . . . . . . 8
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
13 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦)) |
14 | 13 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦)) |
15 | 12, 14 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ {∅} →
(∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦)) |
16 | 15 | adantl 481 |
. . . . . 6
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦)) |
17 | 11, 16 | mpbird 256 |
. . . . 5
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
18 | 7, 17 | jaodan 954 |
. . . 4
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {∅})) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
19 | 5, 18 | sylan2b 593 |
. . 3
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {∅})) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
20 | 19 | ralrimiva 3107 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
21 | | refrel 22567 |
. . . . . 6
⊢ Rel
Ref |
22 | 21 | brrelex1i 5634 |
. . . . 5
⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
23 | | p0ex 5302 |
. . . . 5
⊢ {∅}
∈ V |
24 | | unexg 7577 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ {∅} ∈
V) → (𝐴 ∪
{∅}) ∈ V) |
25 | 22, 23, 24 | sylancl 585 |
. . . 4
⊢ (𝐴Ref𝐵 → (𝐴 ∪ {∅}) ∈ V) |
26 | | uniun 4861 |
. . . . . 6
⊢ ∪ (𝐴
∪ {∅}) = (∪ 𝐴 ∪ ∪
{∅}) |
27 | | 0ex 5226 |
. . . . . . . 8
⊢ ∅
∈ V |
28 | 27 | unisn 4858 |
. . . . . . 7
⊢ ∪ {∅} = ∅ |
29 | 28 | uneq2i 4090 |
. . . . . 6
⊢ (∪ 𝐴
∪ ∪ {∅}) = (∪
𝐴 ∪
∅) |
30 | | un0 4321 |
. . . . . 6
⊢ (∪ 𝐴
∪ ∅) = ∪ 𝐴 |
31 | 26, 29, 30 | 3eqtrri 2771 |
. . . . 5
⊢ ∪ 𝐴 =
∪ (𝐴 ∪ {∅}) |
32 | 31, 2 | isref 22568 |
. . . 4
⊢ ((𝐴 ∪ {∅}) ∈ V
→ ((𝐴 ∪
{∅})Ref𝐵 ↔
(∪ 𝐵 = ∪ 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
33 | 25, 32 | syl 17 |
. . 3
⊢ (𝐴Ref𝐵 → ((𝐴 ∪ {∅})Ref𝐵 ↔ (∪ 𝐵 = ∪
𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
34 | 33 | adantr 480 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ((𝐴 ∪ {∅})Ref𝐵 ↔ (∪ 𝐵 = ∪
𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
35 | 4, 20, 34 | mpbir2and 709 |
1
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵) |