MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refun0 Structured version   Visualization version   GIF version

Theorem refun0 23453
Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
refun0 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)

Proof of Theorem refun0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 𝐴 = 𝐴
2 eqid 2735 . . . 4 𝐵 = 𝐵
31, 2refbas 23448 . . 3 (𝐴Ref𝐵 𝐵 = 𝐴)
43adantr 480 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → 𝐵 = 𝐴)
5 elun 4128 . . . 4 (𝑥 ∈ (𝐴 ∪ {∅}) ↔ (𝑥𝐴𝑥 ∈ {∅}))
6 refssex 23449 . . . . . 6 ((𝐴Ref𝐵𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
76adantlr 715 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
8 0ss 4375 . . . . . . . . 9 ∅ ⊆ 𝑦
98a1i 11 . . . . . . . 8 ((𝐴Ref𝐵𝑦𝐵) → ∅ ⊆ 𝑦)
109reximdva0 4330 . . . . . . 7 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
1110adantr 480 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
12 elsni 4618 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
13 sseq1 3984 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ⊆ 𝑦))
1413rexbidv 3164 . . . . . . . 8 (𝑥 = ∅ → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1512, 14syl 17 . . . . . . 7 (𝑥 ∈ {∅} → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1615adantl 481 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1711, 16mpbird 257 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 𝑥𝑦)
187, 17jaodan 959 . . . 4 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥 ∈ {∅})) → ∃𝑦𝐵 𝑥𝑦)
195, 18sylan2b 594 . . 3 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {∅})) → ∃𝑦𝐵 𝑥𝑦)
2019ralrimiva 3132 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)
21 refrel 23446 . . . . . 6 Rel Ref
2221brrelex1i 5710 . . . . 5 (𝐴Ref𝐵𝐴 ∈ V)
23 p0ex 5354 . . . . 5 {∅} ∈ V
24 unexg 7737 . . . . 5 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ∪ {∅}) ∈ V)
2522, 23, 24sylancl 586 . . . 4 (𝐴Ref𝐵 → (𝐴 ∪ {∅}) ∈ V)
26 uniun 4906 . . . . . 6 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
27 0ex 5277 . . . . . . . 8 ∅ ∈ V
2827unisn 4902 . . . . . . 7 {∅} = ∅
2928uneq2i 4140 . . . . . 6 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
30 un0 4369 . . . . . 6 ( 𝐴 ∪ ∅) = 𝐴
3126, 29, 303eqtrri 2763 . . . . 5 𝐴 = (𝐴 ∪ {∅})
3231, 2isref 23447 . . . 4 ((𝐴 ∪ {∅}) ∈ V → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3325, 32syl 17 . . 3 (𝐴Ref𝐵 → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3433adantr 480 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
354, 20, 34mpbir2and 713 1 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cun 3924  wss 3926  c0 4308  {csn 4601   cuni 4883   class class class wbr 5119  Refcref 23440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-ref 23443
This theorem is referenced by:  locfinref  33872
  Copyright terms: Public domain W3C validator