| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢ ∪ 𝐴 =
∪ 𝐴 |
| 2 | | eqid 2737 |
. . . 4
⊢ ∪ 𝐵 =
∪ 𝐵 |
| 3 | 1, 2 | refbas 23518 |
. . 3
⊢ (𝐴Ref𝐵 → ∪ 𝐵 = ∪
𝐴) |
| 4 | 3 | adantr 480 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ∪ 𝐵 =
∪ 𝐴) |
| 5 | | elun 4153 |
. . . 4
⊢ (𝑥 ∈ (𝐴 ∪ {∅}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {∅})) |
| 6 | | refssex 23519 |
. . . . . 6
⊢ ((𝐴Ref𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 7 | 6 | adantlr 715 |
. . . . 5
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 8 | | 0ss 4400 |
. . . . . . . . 9
⊢ ∅
⊆ 𝑦 |
| 9 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴Ref𝐵 ∧ 𝑦 ∈ 𝐵) → ∅ ⊆ 𝑦) |
| 10 | 9 | reximdva0 4355 |
. . . . . . 7
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦) |
| 12 | | elsni 4643 |
. . . . . . . 8
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
| 13 | | sseq1 4009 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦)) |
| 14 | 13 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦)) |
| 15 | 12, 14 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ {∅} →
(∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦)) |
| 16 | 15 | adantl 481 |
. . . . . 6
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐵 ∅ ⊆ 𝑦)) |
| 17 | 11, 16 | mpbird 257 |
. . . . 5
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 18 | 7, 17 | jaodan 960 |
. . . 4
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {∅})) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 19 | 5, 18 | sylan2b 594 |
. . 3
⊢ (((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {∅})) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 20 | 19 | ralrimiva 3146 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 21 | | refrel 23516 |
. . . . . 6
⊢ Rel
Ref |
| 22 | 21 | brrelex1i 5741 |
. . . . 5
⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
| 23 | | p0ex 5384 |
. . . . 5
⊢ {∅}
∈ V |
| 24 | | unexg 7763 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ {∅} ∈
V) → (𝐴 ∪
{∅}) ∈ V) |
| 25 | 22, 23, 24 | sylancl 586 |
. . . 4
⊢ (𝐴Ref𝐵 → (𝐴 ∪ {∅}) ∈ V) |
| 26 | | uniun 4930 |
. . . . . 6
⊢ ∪ (𝐴
∪ {∅}) = (∪ 𝐴 ∪ ∪
{∅}) |
| 27 | | 0ex 5307 |
. . . . . . . 8
⊢ ∅
∈ V |
| 28 | 27 | unisn 4926 |
. . . . . . 7
⊢ ∪ {∅} = ∅ |
| 29 | 28 | uneq2i 4165 |
. . . . . 6
⊢ (∪ 𝐴
∪ ∪ {∅}) = (∪
𝐴 ∪
∅) |
| 30 | | un0 4394 |
. . . . . 6
⊢ (∪ 𝐴
∪ ∅) = ∪ 𝐴 |
| 31 | 26, 29, 30 | 3eqtrri 2770 |
. . . . 5
⊢ ∪ 𝐴 =
∪ (𝐴 ∪ {∅}) |
| 32 | 31, 2 | isref 23517 |
. . . 4
⊢ ((𝐴 ∪ {∅}) ∈ V
→ ((𝐴 ∪
{∅})Ref𝐵 ↔
(∪ 𝐵 = ∪ 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
| 33 | 25, 32 | syl 17 |
. . 3
⊢ (𝐴Ref𝐵 → ((𝐴 ∪ {∅})Ref𝐵 ↔ (∪ 𝐵 = ∪
𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
| 34 | 33 | adantr 480 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → ((𝐴 ∪ {∅})Ref𝐵 ↔ (∪ 𝐵 = ∪
𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
| 35 | 4, 20, 34 | mpbir2and 713 |
1
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵) |