MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinpfin Structured version   Visualization version   GIF version

Theorem lfinpfin 23462
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)

Proof of Theorem lfinpfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . 8 𝐽 = 𝐽
2 eqid 2735 . . . . . . . 8 𝐴 = 𝐴
31, 2locfinbas 23460 . . . . . . 7 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
43eleq2d 2820 . . . . . 6 (𝐴 ∈ (LocFin‘𝐽) → (𝑥 𝐽𝑥 𝐴))
54biimpar 477 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → 𝑥 𝐽)
61locfinnei 23461 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
75, 6syldan 591 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
8 inelcm 4440 . . . . . . . . . 10 ((𝑥𝑠𝑥𝑛) → (𝑠𝑛) ≠ ∅)
98expcom 413 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
109ad2antlr 727 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) ∧ 𝑠𝐴) → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
1110ss2rabdv 4051 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅})
12 ssfi 9187 . . . . . . . 8 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅}) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1312expcom 413 . . . . . . 7 ({𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1514expimpd 453 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
1615rexlimdvw 3146 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
177, 16mpd 15 . . 3 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1817ralrimiva 3132 . 2 (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin)
192isptfin 23454 . 2 (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin))
2018, 19mpbird 257 1 (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  cin 3925  wss 3926  c0 4308   cuni 4883  cfv 6531  Fincfn 8959  PtFincptfin 23441  LocFinclocfin 23442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963  df-top 22832  df-ptfin 23444  df-locfin 23445
This theorem is referenced by:  locfindis  23468
  Copyright terms: Public domain W3C validator