| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lfinpfin | Structured version Visualization version GIF version | ||
| Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| lfinpfin | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2730 | . . . . . . . 8 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 3 | 1, 2 | locfinbas 23416 | . . . . . . 7 ⊢ (𝐴 ∈ (LocFin‘𝐽) → ∪ 𝐽 = ∪ 𝐴) |
| 4 | 3 | eleq2d 2815 | . . . . . 6 ⊢ (𝐴 ∈ (LocFin‘𝐽) → (𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ ∪ 𝐴)) |
| 5 | 4 | biimpar 477 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → 𝑥 ∈ ∪ 𝐽) |
| 6 | 1 | locfinnei 23417 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
| 7 | 5, 6 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
| 8 | inelcm 4431 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑠 ∧ 𝑥 ∈ 𝑛) → (𝑠 ∩ 𝑛) ≠ ∅) | |
| 9 | 8 | expcom 413 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑛 → (𝑥 ∈ 𝑠 → (𝑠 ∩ 𝑛) ≠ ∅)) |
| 10 | 9 | ad2antlr 727 | . . . . . . . 8 ⊢ ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) ∧ 𝑠 ∈ 𝐴) → (𝑥 ∈ 𝑠 → (𝑠 ∩ 𝑛) ≠ ∅)) |
| 11 | 10 | ss2rabdv 4042 | . . . . . . 7 ⊢ (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅}) |
| 12 | ssfi 9143 | . . . . . . . 8 ⊢ (({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅}) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) | |
| 13 | 12 | expcom 413 | . . . . . . 7 ⊢ ({𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 15 | 14 | expimpd 453 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 16 | 15 | rexlimdvw 3140 | . . . 4 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → (∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 17 | 7, 16 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) |
| 18 | 17 | ralrimiva 3126 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 ∈ ∪ 𝐴{𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) |
| 19 | 2 | isptfin 23410 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ ∪ 𝐴{𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 20 | 18, 19 | mpbird 257 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 ‘cfv 6514 Fincfn 8921 PtFincptfin 23397 LocFinclocfin 23398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 df-top 22788 df-ptfin 23400 df-locfin 23401 |
| This theorem is referenced by: locfindis 23424 |
| Copyright terms: Public domain | W3C validator |