MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinpfin Structured version   Visualization version   GIF version

Theorem lfinpfin 23532
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)

Proof of Theorem lfinpfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
2 eqid 2737 . . . . . . . 8 𝐴 = 𝐴
31, 2locfinbas 23530 . . . . . . 7 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
43eleq2d 2827 . . . . . 6 (𝐴 ∈ (LocFin‘𝐽) → (𝑥 𝐽𝑥 𝐴))
54biimpar 477 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → 𝑥 𝐽)
61locfinnei 23531 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
75, 6syldan 591 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
8 inelcm 4465 . . . . . . . . . 10 ((𝑥𝑠𝑥𝑛) → (𝑠𝑛) ≠ ∅)
98expcom 413 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
109ad2antlr 727 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) ∧ 𝑠𝐴) → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
1110ss2rabdv 4076 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅})
12 ssfi 9213 . . . . . . . 8 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅}) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1312expcom 413 . . . . . . 7 ({𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1514expimpd 453 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
1615rexlimdvw 3160 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
177, 16mpd 15 . . 3 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1817ralrimiva 3146 . 2 (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin)
192isptfin 23524 . 2 (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin))
2018, 19mpbird 257 1 (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  c0 4333   cuni 4907  cfv 6561  Fincfn 8985  PtFincptfin 23511  LocFinclocfin 23512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-en 8986  df-fin 8989  df-top 22900  df-ptfin 23514  df-locfin 23515
This theorem is referenced by:  locfindis  23538
  Copyright terms: Public domain W3C validator