MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinpfin Structured version   Visualization version   GIF version

Theorem lfinpfin 22583
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)

Proof of Theorem lfinpfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
2 eqid 2738 . . . . . . . 8 𝐴 = 𝐴
31, 2locfinbas 22581 . . . . . . 7 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
43eleq2d 2824 . . . . . 6 (𝐴 ∈ (LocFin‘𝐽) → (𝑥 𝐽𝑥 𝐴))
54biimpar 477 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → 𝑥 𝐽)
61locfinnei 22582 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
75, 6syldan 590 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
8 inelcm 4395 . . . . . . . . . 10 ((𝑥𝑠𝑥𝑛) → (𝑠𝑛) ≠ ∅)
98expcom 413 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
109ad2antlr 723 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) ∧ 𝑠𝐴) → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
1110ss2rabdv 4005 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅})
12 ssfi 8918 . . . . . . . 8 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅}) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1312expcom 413 . . . . . . 7 ({𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1514expimpd 453 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
1615rexlimdvw 3218 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
177, 16mpd 15 . . 3 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1817ralrimiva 3107 . 2 (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin)
192isptfin 22575 . 2 (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin))
2018, 19mpbird 256 1 (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  c0 4253   cuni 4836  cfv 6418  Fincfn 8691  PtFincptfin 22562  LocFinclocfin 22563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-top 21951  df-ptfin 22565  df-locfin 22566
This theorem is referenced by:  locfindis  22589
  Copyright terms: Public domain W3C validator