| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lfinpfin | Structured version Visualization version GIF version | ||
| Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| lfinpfin | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . . . . . 8 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 3 | 1, 2 | locfinbas 23407 | . . . . . . 7 ⊢ (𝐴 ∈ (LocFin‘𝐽) → ∪ 𝐽 = ∪ 𝐴) |
| 4 | 3 | eleq2d 2814 | . . . . . 6 ⊢ (𝐴 ∈ (LocFin‘𝐽) → (𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ ∪ 𝐴)) |
| 5 | 4 | biimpar 477 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → 𝑥 ∈ ∪ 𝐽) |
| 6 | 1 | locfinnei 23408 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
| 7 | 5, 6 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
| 8 | inelcm 4416 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑠 ∧ 𝑥 ∈ 𝑛) → (𝑠 ∩ 𝑛) ≠ ∅) | |
| 9 | 8 | expcom 413 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑛 → (𝑥 ∈ 𝑠 → (𝑠 ∩ 𝑛) ≠ ∅)) |
| 10 | 9 | ad2antlr 727 | . . . . . . . 8 ⊢ ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) ∧ 𝑠 ∈ 𝐴) → (𝑥 ∈ 𝑠 → (𝑠 ∩ 𝑛) ≠ ∅)) |
| 11 | 10 | ss2rabdv 4027 | . . . . . . 7 ⊢ (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅}) |
| 12 | ssfi 9087 | . . . . . . . 8 ⊢ (({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅}) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) | |
| 13 | 12 | expcom 413 | . . . . . . 7 ⊢ ({𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 15 | 14 | expimpd 453 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 16 | 15 | rexlimdvw 3135 | . . . 4 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → (∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 17 | 7, 16 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) |
| 18 | 17 | ralrimiva 3121 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 ∈ ∪ 𝐴{𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) |
| 19 | 2 | isptfin 23401 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ ∪ 𝐴{𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
| 20 | 18, 19 | mpbird 257 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3394 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ∪ cuni 4858 ‘cfv 6482 Fincfn 8872 PtFincptfin 23388 LocFinclocfin 23389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-en 8873 df-fin 8876 df-top 22779 df-ptfin 23391 df-locfin 23392 |
| This theorem is referenced by: locfindis 23415 |
| Copyright terms: Public domain | W3C validator |