MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinpfin Structured version   Visualization version   GIF version

Theorem lfinpfin 23418
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)

Proof of Theorem lfinpfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 𝐽 = 𝐽
2 eqid 2730 . . . . . . . 8 𝐴 = 𝐴
31, 2locfinbas 23416 . . . . . . 7 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
43eleq2d 2815 . . . . . 6 (𝐴 ∈ (LocFin‘𝐽) → (𝑥 𝐽𝑥 𝐴))
54biimpar 477 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → 𝑥 𝐽)
61locfinnei 23417 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
75, 6syldan 591 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
8 inelcm 4431 . . . . . . . . . 10 ((𝑥𝑠𝑥𝑛) → (𝑠𝑛) ≠ ∅)
98expcom 413 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
109ad2antlr 727 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) ∧ 𝑠𝐴) → (𝑥𝑠 → (𝑠𝑛) ≠ ∅))
1110ss2rabdv 4042 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅})
12 ssfi 9143 . . . . . . . 8 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅}) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1312expcom 413 . . . . . . 7 ({𝑠𝐴𝑥𝑠} ⊆ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) ∧ 𝑥𝑛) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠𝐴𝑥𝑠} ∈ Fin))
1514expimpd 453 . . . . 5 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
1615rexlimdvw 3140 . . . 4 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴𝑥𝑠} ∈ Fin))
177, 16mpd 15 . . 3 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐴) → {𝑠𝐴𝑥𝑠} ∈ Fin)
1817ralrimiva 3126 . 2 (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin)
192isptfin 23410 . 2 (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 𝐴{𝑠𝐴𝑥𝑠} ∈ Fin))
2018, 19mpbird 257 1 (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cin 3916  wss 3917  c0 4299   cuni 4874  cfv 6514  Fincfn 8921  PtFincptfin 23397  LocFinclocfin 23398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-fin 8925  df-top 22788  df-ptfin 23400  df-locfin 23401
This theorem is referenced by:  locfindis  23424
  Copyright terms: Public domain W3C validator