![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfinpfin | Structured version Visualization version GIF version |
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
lfinpfin | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2735 | . . . . . . . 8 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
3 | 1, 2 | locfinbas 23546 | . . . . . . 7 ⊢ (𝐴 ∈ (LocFin‘𝐽) → ∪ 𝐽 = ∪ 𝐴) |
4 | 3 | eleq2d 2825 | . . . . . 6 ⊢ (𝐴 ∈ (LocFin‘𝐽) → (𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ ∪ 𝐴)) |
5 | 4 | biimpar 477 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → 𝑥 ∈ ∪ 𝐽) |
6 | 1 | locfinnei 23547 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
7 | 5, 6 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
8 | inelcm 4471 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑠 ∧ 𝑥 ∈ 𝑛) → (𝑠 ∩ 𝑛) ≠ ∅) | |
9 | 8 | expcom 413 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑛 → (𝑥 ∈ 𝑠 → (𝑠 ∩ 𝑛) ≠ ∅)) |
10 | 9 | ad2antlr 727 | . . . . . . . 8 ⊢ ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) ∧ 𝑠 ∈ 𝐴) → (𝑥 ∈ 𝑠 → (𝑠 ∩ 𝑛) ≠ ∅)) |
11 | 10 | ss2rabdv 4086 | . . . . . . 7 ⊢ (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅}) |
12 | ssfi 9212 | . . . . . . . 8 ⊢ (({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅}) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) | |
13 | 12 | expcom 413 | . . . . . . 7 ⊢ ({𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ⊆ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) ∧ 𝑥 ∈ 𝑛) → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
15 | 14 | expimpd 453 | . . . . 5 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
16 | 15 | rexlimdvw 3158 | . . . 4 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → (∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
17 | 7, 16 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ ∪ 𝐴) → {𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) |
18 | 17 | ralrimiva 3144 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 ∈ ∪ 𝐴{𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin) |
19 | 2 | isptfin 23540 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ ∪ 𝐴{𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠} ∈ Fin)) |
20 | 18, 19 | mpbird 257 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3433 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ‘cfv 6563 Fincfn 8984 PtFincptfin 23527 LocFinclocfin 23528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-fin 8988 df-top 22916 df-ptfin 23530 df-locfin 23531 |
This theorem is referenced by: locfindis 23554 |
Copyright terms: Public domain | W3C validator |