MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islocfin Structured version   Visualization version   GIF version

Theorem islocfin 22891
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
islocfin.1 𝑋 = βˆͺ 𝐽
islocfin.2 π‘Œ = βˆͺ 𝐴
Assertion
Ref Expression
islocfin (𝐴 ∈ (LocFinβ€˜π½) ↔ (𝐽 ∈ Top ∧ 𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
Distinct variable groups:   𝑛,𝑠,π‘₯,𝐴   𝑛,𝐽,π‘₯   π‘₯,𝑋
Allowed substitution hints:   𝐽(𝑠)   𝑋(𝑛,𝑠)   π‘Œ(π‘₯,𝑛,𝑠)

Proof of Theorem islocfin
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-locfin 22881 . . . 4 LocFin = (𝑗 ∈ Top ↦ {𝑦 ∣ (βˆͺ 𝑗 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ βˆͺ π‘—βˆƒπ‘› ∈ 𝑗 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))})
21mptrcl 6961 . . 3 (𝐴 ∈ (LocFinβ€˜π½) β†’ 𝐽 ∈ Top)
3 eqimss2 4005 . . . . . . . . . . 11 (𝑋 = βˆͺ 𝑦 β†’ βˆͺ 𝑦 βŠ† 𝑋)
4 sspwuni 5064 . . . . . . . . . . 11 (𝑦 βŠ† 𝒫 𝑋 ↔ βˆͺ 𝑦 βŠ† 𝑋)
53, 4sylibr 233 . . . . . . . . . 10 (𝑋 = βˆͺ 𝑦 β†’ 𝑦 βŠ† 𝒫 𝑋)
6 velpw 4569 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝒫 𝑋 ↔ 𝑦 βŠ† 𝒫 𝑋)
75, 6sylibr 233 . . . . . . . . 9 (𝑋 = βˆͺ 𝑦 β†’ 𝑦 ∈ 𝒫 𝒫 𝑋)
87adantr 482 . . . . . . . 8 ((𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)) β†’ 𝑦 ∈ 𝒫 𝒫 𝑋)
98abssi 4031 . . . . . . 7 {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} βŠ† 𝒫 𝒫 𝑋
10 islocfin.1 . . . . . . . . 9 𝑋 = βˆͺ 𝐽
1110topopn 22278 . . . . . . . 8 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
12 pwexg 5337 . . . . . . . 8 (𝑋 ∈ 𝐽 β†’ 𝒫 𝑋 ∈ V)
13 pwexg 5337 . . . . . . . 8 (𝒫 𝑋 ∈ V β†’ 𝒫 𝒫 𝑋 ∈ V)
1411, 12, 133syl 18 . . . . . . 7 (𝐽 ∈ Top β†’ 𝒫 𝒫 𝑋 ∈ V)
15 ssexg 5284 . . . . . . 7 (({𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} βŠ† 𝒫 𝒫 𝑋 ∧ 𝒫 𝒫 𝑋 ∈ V) β†’ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} ∈ V)
169, 14, 15sylancr 588 . . . . . 6 (𝐽 ∈ Top β†’ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} ∈ V)
17 unieq 4880 . . . . . . . . . . 11 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
1817, 10eqtr4di 2791 . . . . . . . . . 10 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = 𝑋)
1918eqeq1d 2735 . . . . . . . . 9 (𝑗 = 𝐽 β†’ (βˆͺ 𝑗 = βˆͺ 𝑦 ↔ 𝑋 = βˆͺ 𝑦))
20 rexeq 3309 . . . . . . . . . 10 (𝑗 = 𝐽 β†’ (βˆƒπ‘› ∈ 𝑗 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
2118, 20raleqbidv 3318 . . . . . . . . 9 (𝑗 = 𝐽 β†’ (βˆ€π‘₯ ∈ βˆͺ π‘—βˆƒπ‘› ∈ 𝑗 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
2219, 21anbi12d 632 . . . . . . . 8 (𝑗 = 𝐽 β†’ ((βˆͺ 𝑗 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ βˆͺ π‘—βˆƒπ‘› ∈ 𝑗 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)) ↔ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))))
2322abbidv 2802 . . . . . . 7 (𝑗 = 𝐽 β†’ {𝑦 ∣ (βˆͺ 𝑗 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ βˆͺ π‘—βˆƒπ‘› ∈ 𝑗 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} = {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))})
2423, 1fvmptg 6950 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} ∈ V) β†’ (LocFinβ€˜π½) = {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))})
2516, 24mpdan 686 . . . . 5 (𝐽 ∈ Top β†’ (LocFinβ€˜π½) = {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))})
2625eleq2d 2820 . . . 4 (𝐽 ∈ Top β†’ (𝐴 ∈ (LocFinβ€˜π½) ↔ 𝐴 ∈ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))}))
27 elex 3465 . . . . . 6 (𝐴 ∈ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} β†’ 𝐴 ∈ V)
2827adantl 483 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))}) β†’ 𝐴 ∈ V)
29 simpr 486 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 = π‘Œ) β†’ 𝑋 = π‘Œ)
30 islocfin.2 . . . . . . . . . 10 π‘Œ = βˆͺ 𝐴
3129, 30eqtrdi 2789 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = π‘Œ) β†’ 𝑋 = βˆͺ 𝐴)
3211adantr 482 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = π‘Œ) β†’ 𝑋 ∈ 𝐽)
3331, 32eqeltrrd 2835 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 = π‘Œ) β†’ βˆͺ 𝐴 ∈ 𝐽)
3433elexd 3467 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 = π‘Œ) β†’ βˆͺ 𝐴 ∈ V)
35 uniexb 7702 . . . . . . 7 (𝐴 ∈ V ↔ βˆͺ 𝐴 ∈ V)
3634, 35sylibr 233 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 = π‘Œ) β†’ 𝐴 ∈ V)
3736adantrr 716 . . . . 5 ((𝐽 ∈ Top ∧ (𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))) β†’ 𝐴 ∈ V)
38 unieq 4880 . . . . . . . . 9 (𝑦 = 𝐴 β†’ βˆͺ 𝑦 = βˆͺ 𝐴)
3938, 30eqtr4di 2791 . . . . . . . 8 (𝑦 = 𝐴 β†’ βˆͺ 𝑦 = π‘Œ)
4039eqeq2d 2744 . . . . . . 7 (𝑦 = 𝐴 β†’ (𝑋 = βˆͺ 𝑦 ↔ 𝑋 = π‘Œ))
41 rabeq 3420 . . . . . . . . . . 11 (𝑦 = 𝐴 β†’ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} = {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…})
4241eleq1d 2819 . . . . . . . . . 10 (𝑦 = 𝐴 β†’ ({𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin ↔ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
4342anbi2d 630 . . . . . . . . 9 (𝑦 = 𝐴 β†’ ((π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
4443rexbidv 3172 . . . . . . . 8 (𝑦 = 𝐴 β†’ (βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
4544ralbidv 3171 . . . . . . 7 (𝑦 = 𝐴 β†’ (βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
4640, 45anbi12d 632 . . . . . 6 (𝑦 = 𝐴 β†’ ((𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)) ↔ (𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))))
4746elabg 3632 . . . . 5 (𝐴 ∈ V β†’ (𝐴 ∈ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} ↔ (𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))))
4828, 37, 47pm5.21nd 801 . . . 4 (𝐽 ∈ Top β†’ (𝐴 ∈ {𝑦 ∣ (𝑋 = βˆͺ 𝑦 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))} ↔ (𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))))
4926, 48bitrd 279 . . 3 (𝐽 ∈ Top β†’ (𝐴 ∈ (LocFinβ€˜π½) ↔ (𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))))
502, 49biadanii 821 . 2 (𝐴 ∈ (LocFinβ€˜π½) ↔ (𝐽 ∈ Top ∧ (𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))))
51 3anass 1096 . 2 ((𝐽 ∈ Top ∧ 𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)) ↔ (𝐽 ∈ Top ∧ (𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))))
5250, 51bitr4i 278 1 (𝐴 ∈ (LocFinβ€˜π½) ↔ (𝐽 ∈ Top ∧ 𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3406  Vcvv 3447   ∩ cin 3913   βŠ† wss 3914  βˆ…c0 4286  π’« cpw 4564  βˆͺ cuni 4869  β€˜cfv 6500  Fincfn 8889  Topctop 22265  LocFinclocfin 22878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fv 6508  df-top 22266  df-locfin 22881
This theorem is referenced by:  finlocfin  22894  locfintop  22895  locfinbas  22896  locfinnei  22897  lfinun  22899  dissnlocfin  22903  locfindis  22904  locfincf  22905  locfinreflem  32485  locfinref  32486
  Copyright terms: Public domain W3C validator