Step | Hyp | Ref
| Expression |
1 | | df-locfin 22658 |
. . . 4
⊢ LocFin =
(𝑗 ∈ Top ↦
{𝑦 ∣ (∪ 𝑗 =
∪ 𝑦 ∧ ∀𝑥 ∈ ∪ 𝑗∃𝑛 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))}) |
2 | 1 | mptrcl 6884 |
. . 3
⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
3 | | eqimss2 3978 |
. . . . . . . . . . 11
⊢ (𝑋 = ∪
𝑦 → ∪ 𝑦
⊆ 𝑋) |
4 | | sspwuni 5029 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝒫 𝑋 ↔ ∪ 𝑦
⊆ 𝑋) |
5 | 3, 4 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝑋 = ∪
𝑦 → 𝑦 ⊆ 𝒫 𝑋) |
6 | | velpw 4538 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 𝒫
𝑋 ↔ 𝑦 ⊆ 𝒫 𝑋) |
7 | 5, 6 | sylibr 233 |
. . . . . . . . 9
⊢ (𝑋 = ∪
𝑦 → 𝑦 ∈ 𝒫 𝒫 𝑋) |
8 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝑋 = ∪
𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) → 𝑦 ∈ 𝒫 𝒫
𝑋) |
9 | 8 | abssi 4003 |
. . . . . . 7
⊢ {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} ⊆
𝒫 𝒫 𝑋 |
10 | | islocfin.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝐽 |
11 | 10 | topopn 22055 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
12 | | pwexg 5301 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) |
13 | | pwexg 5301 |
. . . . . . . 8
⊢
(𝒫 𝑋 ∈
V → 𝒫 𝒫 𝑋 ∈ V) |
14 | 11, 12, 13 | 3syl 18 |
. . . . . . 7
⊢ (𝐽 ∈ Top → 𝒫
𝒫 𝑋 ∈
V) |
15 | | ssexg 5247 |
. . . . . . 7
⊢ (({𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} ⊆
𝒫 𝒫 𝑋 ∧
𝒫 𝒫 𝑋
∈ V) → {𝑦 ∣
(𝑋 = ∪ 𝑦
∧ ∀𝑥 ∈
𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} ∈
V) |
16 | 9, 14, 15 | sylancr 587 |
. . . . . 6
⊢ (𝐽 ∈ Top → {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} ∈
V) |
17 | | unieq 4850 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪
𝐽) |
18 | 17, 10 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
19 | 18 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∪ 𝑗 = ∪
𝑦 ↔ 𝑋 = ∪ 𝑦)) |
20 | | rexeq 3343 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (∃𝑛 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔
∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))) |
21 | 18, 20 | raleqbidv 3336 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ ∪ 𝑗∃𝑛 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔
∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))) |
22 | 19, 21 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → ((∪ 𝑗 = ∪
𝑦 ∧ ∀𝑥 ∈ ∪ 𝑗∃𝑛 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) ↔ (𝑋 = ∪
𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin)))) |
23 | 22 | abbidv 2807 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → {𝑦 ∣ (∪ 𝑗 = ∪
𝑦 ∧ ∀𝑥 ∈ ∪ 𝑗∃𝑛 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} = {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))}) |
24 | 23, 1 | fvmptg 6873 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} ∈ V)
→ (LocFin‘𝐽) =
{𝑦 ∣ (𝑋 = ∪
𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))}) |
25 | 16, 24 | mpdan 684 |
. . . . 5
⊢ (𝐽 ∈ Top →
(LocFin‘𝐽) = {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))}) |
26 | 25 | eleq2d 2824 |
. . . 4
⊢ (𝐽 ∈ Top → (𝐴 ∈ (LocFin‘𝐽) ↔ 𝐴 ∈ {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))})) |
27 | | elex 3450 |
. . . . . 6
⊢ (𝐴 ∈ {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} → 𝐴 ∈ V) |
28 | 27 | adantl 482 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))}) → 𝐴 ∈ V) |
29 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) |
30 | | islocfin.2 |
. . . . . . . . . 10
⊢ 𝑌 = ∪
𝐴 |
31 | 29, 30 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋 = ∪ 𝐴) |
32 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝐽) |
33 | 31, 32 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → ∪ 𝐴 ∈ 𝐽) |
34 | 33 | elexd 3452 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → ∪ 𝐴 ∈ V) |
35 | | uniexb 7614 |
. . . . . . 7
⊢ (𝐴 ∈ V ↔ ∪ 𝐴
∈ V) |
36 | 34, 35 | sylibr 233 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝐴 ∈ V) |
37 | 36 | adantrr 714 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) → 𝐴 ∈ V) |
38 | | unieq 4850 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪
𝐴) |
39 | 38, 30 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ∪ 𝑦 = 𝑌) |
40 | 39 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = 𝑌)) |
41 | | rabeq 3418 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} = {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅}) |
42 | 41 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → ({𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ↔ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
43 | 42 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))) |
44 | 43 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔
∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))) |
45 | 44 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔
∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))) |
46 | 40, 45 | anbi12d 631 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin)))) |
47 | 46 | elabg 3607 |
. . . . 5
⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin)))) |
48 | 28, 37, 47 | pm5.21nd 799 |
. . . 4
⊢ (𝐽 ∈ Top → (𝐴 ∈ {𝑦 ∣ (𝑋 = ∪ 𝑦 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))} ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin)))) |
49 | 26, 48 | bitrd 278 |
. . 3
⊢ (𝐽 ∈ Top → (𝐴 ∈ (LocFin‘𝐽) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin)))) |
50 | 2, 49 | biadanii 819 |
. 2
⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin)))) |
51 | | 3anass 1094 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) ↔ (𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin)))) |
52 | 50, 51 | bitr4i 277 |
1
⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))) |