MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islocfin Structured version   Visualization version   GIF version

Theorem islocfin 22668
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
islocfin.1 𝑋 = 𝐽
islocfin.2 𝑌 = 𝐴
Assertion
Ref Expression
islocfin (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
Distinct variable groups:   𝑛,𝑠,𝑥,𝐴   𝑛,𝐽,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐽(𝑠)   𝑋(𝑛,𝑠)   𝑌(𝑥,𝑛,𝑠)

Proof of Theorem islocfin
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-locfin 22658 . . . 4 LocFin = (𝑗 ∈ Top ↦ {𝑦 ∣ ( 𝑗 = 𝑦 ∧ ∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
21mptrcl 6884 . . 3 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
3 eqimss2 3978 . . . . . . . . . . 11 (𝑋 = 𝑦 𝑦𝑋)
4 sspwuni 5029 . . . . . . . . . . 11 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
53, 4sylibr 233 . . . . . . . . . 10 (𝑋 = 𝑦𝑦 ⊆ 𝒫 𝑋)
6 velpw 4538 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
75, 6sylibr 233 . . . . . . . . 9 (𝑋 = 𝑦𝑦 ∈ 𝒫 𝒫 𝑋)
87adantr 481 . . . . . . . 8 ((𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) → 𝑦 ∈ 𝒫 𝒫 𝑋)
98abssi 4003 . . . . . . 7 {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ⊆ 𝒫 𝒫 𝑋
10 islocfin.1 . . . . . . . . 9 𝑋 = 𝐽
1110topopn 22055 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
12 pwexg 5301 . . . . . . . 8 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
13 pwexg 5301 . . . . . . . 8 (𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V)
1411, 12, 133syl 18 . . . . . . 7 (𝐽 ∈ Top → 𝒫 𝒫 𝑋 ∈ V)
15 ssexg 5247 . . . . . . 7 (({𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ⊆ 𝒫 𝒫 𝑋 ∧ 𝒫 𝒫 𝑋 ∈ V) → {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ∈ V)
169, 14, 15sylancr 587 . . . . . 6 (𝐽 ∈ Top → {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ∈ V)
17 unieq 4850 . . . . . . . . . . 11 (𝑗 = 𝐽 𝑗 = 𝐽)
1817, 10eqtr4di 2796 . . . . . . . . . 10 (𝑗 = 𝐽 𝑗 = 𝑋)
1918eqeq1d 2740 . . . . . . . . 9 (𝑗 = 𝐽 → ( 𝑗 = 𝑦𝑋 = 𝑦))
20 rexeq 3343 . . . . . . . . . 10 (𝑗 = 𝐽 → (∃𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2118, 20raleqbidv 3336 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2219, 21anbi12d 631 . . . . . . . 8 (𝑗 = 𝐽 → (( 𝑗 = 𝑦 ∧ ∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) ↔ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
2322abbidv 2807 . . . . . . 7 (𝑗 = 𝐽 → {𝑦 ∣ ( 𝑗 = 𝑦 ∧ ∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} = {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
2423, 1fvmptg 6873 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ∈ V) → (LocFin‘𝐽) = {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
2516, 24mpdan 684 . . . . 5 (𝐽 ∈ Top → (LocFin‘𝐽) = {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
2625eleq2d 2824 . . . 4 (𝐽 ∈ Top → (𝐴 ∈ (LocFin‘𝐽) ↔ 𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))}))
27 elex 3450 . . . . . 6 (𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} → 𝐴 ∈ V)
2827adantl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))}) → 𝐴 ∈ V)
29 simpr 485 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
30 islocfin.2 . . . . . . . . . 10 𝑌 = 𝐴
3129, 30eqtrdi 2794 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋 = 𝐴)
3211adantr 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋𝐽)
3331, 32eqeltrrd 2840 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝐴𝐽)
3433elexd 3452 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝐴 ∈ V)
35 uniexb 7614 . . . . . . 7 (𝐴 ∈ V ↔ 𝐴 ∈ V)
3634, 35sylibr 233 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝐴 ∈ V)
3736adantrr 714 . . . . 5 ((𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))) → 𝐴 ∈ V)
38 unieq 4850 . . . . . . . . 9 (𝑦 = 𝐴 𝑦 = 𝐴)
3938, 30eqtr4di 2796 . . . . . . . 8 (𝑦 = 𝐴 𝑦 = 𝑌)
4039eqeq2d 2749 . . . . . . 7 (𝑦 = 𝐴 → (𝑋 = 𝑦𝑋 = 𝑌))
41 rabeq 3418 . . . . . . . . . . 11 (𝑦 = 𝐴 → {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} = {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅})
4241eleq1d 2823 . . . . . . . . . 10 (𝑦 = 𝐴 → ({𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ↔ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
4342anbi2d 629 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
4443rexbidv 3226 . . . . . . . 8 (𝑦 = 𝐴 → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
4544ralbidv 3112 . . . . . . 7 (𝑦 = 𝐴 → (∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
4640, 45anbi12d 631 . . . . . 6 (𝑦 = 𝐴 → ((𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
4746elabg 3607 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
4828, 37, 47pm5.21nd 799 . . . 4 (𝐽 ∈ Top → (𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
4926, 48bitrd 278 . . 3 (𝐽 ∈ Top → (𝐴 ∈ (LocFin‘𝐽) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
502, 49biadanii 819 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
51 3anass 1094 . 2 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) ↔ (𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
5250, 51bitr4i 277 1 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839  cfv 6433  Fincfn 8733  Topctop 22042  LocFinclocfin 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-locfin 22658
This theorem is referenced by:  finlocfin  22671  locfintop  22672  locfinbas  22673  locfinnei  22674  lfinun  22676  dissnlocfin  22680  locfindis  22681  locfincf  22682  locfinreflem  31790  locfinref  31791
  Copyright terms: Public domain W3C validator