Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgrp2sgrp Structured version   Visualization version   GIF version

Theorem sgrp2sgrp 48258
Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
sgrp2sgrp (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp)

Proof of Theorem sgrp2sgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm2mgm 48257 . . . 4 (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)
21anbi1i 624 . . 3 ((𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ (+g𝑀) assLaw (Base‘𝑀)))
3 fvex 6835 . . . . . 6 (+g𝑀) ∈ V
4 fvex 6835 . . . . . 6 (Base‘𝑀) ∈ V
53, 4pm3.2i 470 . . . . 5 ((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V)
6 isasslaw 48222 . . . . 5 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
75, 6mp1i 13 . . . 4 (𝑀 ∈ Mgm → ((+g𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
87pm5.32i 574 . . 3 ((𝑀 ∈ Mgm ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
92, 8bitri 275 . 2 ((𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
10 eqid 2731 . . 3 (Base‘𝑀) = (Base‘𝑀)
11 eqid 2731 . . 3 (+g𝑀) = (+g𝑀)
1210, 11issgrpALT 48255 . 2 (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)))
1310, 11issgrp 18625 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
149, 12, 133bitr4i 303 1 (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  Mgmcmgm 18543  Smgrpcsgrp 18623   assLaw casslaw 48214  MgmALTcmgm2 48245  SGrpALTcsgrp2 48247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-iota 6437  df-fv 6489  df-ov 7349  df-mgm 18545  df-sgrp 18624  df-cllaw 48216  df-asslaw 48218  df-mgm2 48249  df-sgrp2 48251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator