Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgrp2sgrp Structured version   Visualization version   GIF version

Theorem sgrp2sgrp 45095
Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
sgrp2sgrp (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp)

Proof of Theorem sgrp2sgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm2mgm 45094 . . . 4 (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)
21anbi1i 627 . . 3 ((𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ (+g𝑀) assLaw (Base‘𝑀)))
3 fvex 6730 . . . . . 6 (+g𝑀) ∈ V
4 fvex 6730 . . . . . 6 (Base‘𝑀) ∈ V
53, 4pm3.2i 474 . . . . 5 ((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V)
6 isasslaw 45059 . . . . 5 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
75, 6mp1i 13 . . . 4 (𝑀 ∈ Mgm → ((+g𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
87pm5.32i 578 . . 3 ((𝑀 ∈ Mgm ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
92, 8bitri 278 . 2 ((𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
10 eqid 2737 . . 3 (Base‘𝑀) = (Base‘𝑀)
11 eqid 2737 . . 3 (+g𝑀) = (+g𝑀)
1210, 11issgrpALT 45092 . 2 (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)))
1310, 11issgrp 18164 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
149, 12, 133bitr4i 306 1 (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  Mgmcmgm 18112  Smgrpcsgrp 18162   assLaw casslaw 45051  MgmALTcmgm2 45082  SGrpALTcsgrp2 45084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-iota 6338  df-fv 6388  df-ov 7216  df-mgm 18114  df-sgrp 18163  df-cllaw 45053  df-asslaw 45055  df-mgm2 45086  df-sgrp2 45088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator