![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgrp2sgrp | Structured version Visualization version GIF version |
Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.) |
Ref | Expression |
---|---|
sgrp2sgrp | ⊢ (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgm2mgm 47177 | . . . 4 ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) | |
2 | 1 | anbi1i 623 | . . 3 ⊢ ((𝑀 ∈ MgmALT ∧ (+g‘𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ (+g‘𝑀) assLaw (Base‘𝑀))) |
3 | fvex 6898 | . . . . . 6 ⊢ (+g‘𝑀) ∈ V | |
4 | fvex 6898 | . . . . . 6 ⊢ (Base‘𝑀) ∈ V | |
5 | 3, 4 | pm3.2i 470 | . . . . 5 ⊢ ((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) |
6 | isasslaw 47142 | . . . . 5 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) | |
7 | 5, 6 | mp1i 13 | . . . 4 ⊢ (𝑀 ∈ Mgm → ((+g‘𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
8 | 7 | pm5.32i 574 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ (+g‘𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
9 | 2, 8 | bitri 275 | . 2 ⊢ ((𝑀 ∈ MgmALT ∧ (+g‘𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
10 | eqid 2726 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
11 | eqid 2726 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
12 | 10, 11 | issgrpALT 47175 | . 2 ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ (+g‘𝑀) assLaw (Base‘𝑀))) |
13 | 10, 11 | issgrp 18653 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
14 | 9, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 Mgmcmgm 18571 Smgrpcsgrp 18651 assLaw casslaw 47134 MgmALTcmgm2 47165 SGrpALTcsgrp2 47167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-iota 6489 df-fv 6545 df-ov 7408 df-mgm 18573 df-sgrp 18652 df-cllaw 47136 df-asslaw 47138 df-mgm2 47169 df-sgrp2 47171 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |