| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgrp2sgrp | Structured version Visualization version GIF version | ||
| Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| sgrp2sgrp | ⊢ (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgm2mgm 48116 | . . . 4 ⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) | |
| 2 | 1 | anbi1i 624 | . . 3 ⊢ ((𝑀 ∈ MgmALT ∧ (+g‘𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ (+g‘𝑀) assLaw (Base‘𝑀))) |
| 3 | fvex 6899 | . . . . . 6 ⊢ (+g‘𝑀) ∈ V | |
| 4 | fvex 6899 | . . . . . 6 ⊢ (Base‘𝑀) ∈ V | |
| 5 | 3, 4 | pm3.2i 470 | . . . . 5 ⊢ ((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) |
| 6 | isasslaw 48081 | . . . . 5 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) | |
| 7 | 5, 6 | mp1i 13 | . . . 4 ⊢ (𝑀 ∈ Mgm → ((+g‘𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
| 8 | 7 | pm5.32i 574 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ (+g‘𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
| 9 | 2, 8 | bitri 275 | . 2 ⊢ ((𝑀 ∈ MgmALT ∧ (+g‘𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
| 10 | eqid 2734 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 11 | eqid 2734 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 12 | 10, 11 | issgrpALT 48114 | . 2 ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ (+g‘𝑀) assLaw (Base‘𝑀))) |
| 13 | 10, 11 | issgrp 18703 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
| 14 | 9, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Mgmcmgm 18621 Smgrpcsgrp 18701 assLaw casslaw 48073 MgmALTcmgm2 48104 SGrpALTcsgrp2 48106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-iota 6494 df-fv 6549 df-ov 7416 df-mgm 18623 df-sgrp 18702 df-cllaw 48075 df-asslaw 48077 df-mgm2 48108 df-sgrp2 48110 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |