Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgrp2sgrp Structured version   Visualization version   GIF version

Theorem sgrp2sgrp 43505
Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
sgrp2sgrp (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ SGrp)

Proof of Theorem sgrp2sgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm2mgm 43504 . . . 4 (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm)
21anbi1i 614 . . 3 ((𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ (+g𝑀) assLaw (Base‘𝑀)))
3 fvex 6512 . . . . . 6 (+g𝑀) ∈ V
4 fvex 6512 . . . . . 6 (Base‘𝑀) ∈ V
53, 4pm3.2i 463 . . . . 5 ((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V)
6 isasslaw 43469 . . . . 5 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
75, 6mp1i 13 . . . 4 (𝑀 ∈ Mgm → ((+g𝑀) assLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
87pm5.32i 567 . . 3 ((𝑀 ∈ Mgm ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
92, 8bitri 267 . 2 ((𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)) ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
10 eqid 2778 . . 3 (Base‘𝑀) = (Base‘𝑀)
11 eqid 2778 . . 3 (+g𝑀) = (+g𝑀)
1210, 11issgrpALT 43502 . 2 (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ (+g𝑀) assLaw (Base‘𝑀)))
1310, 11issgrp 17753 . 2 (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
149, 12, 133bitr4i 295 1 (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ SGrp)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088  Vcvv 3415   class class class wbr 4929  cfv 6188  (class class class)co 6976  Basecbs 16339  +gcplusg 16421  Mgmcmgm 17708  SGrpcsgrp 17751   assLaw casslaw 43461  MgmALTcmgm2 43492  SGrpALTcsgrp2 43494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-iota 6152  df-fv 6196  df-ov 6979  df-mgm 17710  df-sgrp 17752  df-cllaw 43463  df-asslaw 43465  df-mgm2 43496  df-sgrp2 43498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator