MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem2 Structured version   Visualization version   GIF version

Theorem txcmplem2 22993
Description: Lemma for txcmp 22994. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x 𝑋 = 𝑅
txcmp.y 𝑌 = 𝑆
txcmp.r (𝜑𝑅 ∈ Comp)
txcmp.s (𝜑𝑆 ∈ Comp)
txcmp.w (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
txcmp.u (𝜑 → (𝑋 × 𝑌) = 𝑊)
Assertion
Ref Expression
txcmplem2 (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
Distinct variable groups:   𝑣,𝑆   𝑣,𝑌   𝑣,𝑊   𝑣,𝑋
Allowed substitution hints:   𝜑(𝑣)   𝑅(𝑣)

Proof of Theorem txcmplem2
Dummy variables 𝑓 𝑢 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.s . . 3 (𝜑𝑆 ∈ Comp)
2 txcmp.x . . . . 5 𝑋 = 𝑅
3 txcmp.y . . . . 5 𝑌 = 𝑆
4 txcmp.r . . . . . 6 (𝜑𝑅 ∈ Comp)
54adantr 481 . . . . 5 ((𝜑𝑥𝑌) → 𝑅 ∈ Comp)
61adantr 481 . . . . 5 ((𝜑𝑥𝑌) → 𝑆 ∈ Comp)
7 txcmp.w . . . . . 6 (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
87adantr 481 . . . . 5 ((𝜑𝑥𝑌) → 𝑊 ⊆ (𝑅 ×t 𝑆))
9 txcmp.u . . . . . 6 (𝜑 → (𝑋 × 𝑌) = 𝑊)
109adantr 481 . . . . 5 ((𝜑𝑥𝑌) → (𝑋 × 𝑌) = 𝑊)
11 simpr 485 . . . . 5 ((𝜑𝑥𝑌) → 𝑥𝑌)
122, 3, 5, 6, 8, 10, 11txcmplem1 22992 . . . 4 ((𝜑𝑥𝑌) → ∃𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
1312ralrimiva 3143 . . 3 (𝜑 → ∀𝑥𝑌𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
14 unieq 4876 . . . . 5 (𝑣 = (𝑓𝑢) → 𝑣 = (𝑓𝑢))
1514sseq2d 3976 . . . 4 (𝑣 = (𝑓𝑢) → ((𝑋 × 𝑢) ⊆ 𝑣 ↔ (𝑋 × 𝑢) ⊆ (𝑓𝑢)))
163, 15cmpcovf 22742 . . 3 ((𝑆 ∈ Comp ∧ ∀𝑥𝑌𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)) → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))))
171, 13, 16syl2anc 584 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))))
18 simprrl 779 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin))
19 ffn 6668 . . . . . . . . . . 11 (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) → 𝑓 Fn 𝑤)
20 fniunfv 7194 . . . . . . . . . . 11 (𝑓 Fn 𝑤 𝑧𝑤 (𝑓𝑧) = ran 𝑓)
2118, 19, 203syl 18 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) = ran 𝑓)
2218frnd 6676 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓 ⊆ (𝒫 𝑊 ∩ Fin))
23 inss1 4188 . . . . . . . . . . . 12 (𝒫 𝑊 ∩ Fin) ⊆ 𝒫 𝑊
2422, 23sstrdi 3956 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓 ⊆ 𝒫 𝑊)
25 sspwuni 5060 . . . . . . . . . . 11 (ran 𝑓 ⊆ 𝒫 𝑊 ran 𝑓𝑊)
2624, 25sylib 217 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓𝑊)
2721, 26eqsstrd 3982 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ⊆ 𝑊)
28 vex 3449 . . . . . . . . . . 11 𝑤 ∈ V
29 fvex 6855 . . . . . . . . . . 11 (𝑓𝑧) ∈ V
3028, 29iunex 7901 . . . . . . . . . 10 𝑧𝑤 (𝑓𝑧) ∈ V
3130elpw 4564 . . . . . . . . 9 ( 𝑧𝑤 (𝑓𝑧) ∈ 𝒫 𝑊 𝑧𝑤 (𝑓𝑧) ⊆ 𝑊)
3227, 31sylibr 233 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ 𝒫 𝑊)
33 inss2 4189 . . . . . . . . . 10 (𝒫 𝑆 ∩ Fin) ⊆ Fin
34 simplr 767 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑤 ∈ (𝒫 𝑆 ∩ Fin))
3533, 34sselid 3942 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑤 ∈ Fin)
36 inss2 4189 . . . . . . . . . . 11 (𝒫 𝑊 ∩ Fin) ⊆ Fin
37 fss 6685 . . . . . . . . . . 11 ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ (𝒫 𝑊 ∩ Fin) ⊆ Fin) → 𝑓:𝑤⟶Fin)
3818, 36, 37sylancl 586 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑓:𝑤⟶Fin)
39 ffvelcdm 7032 . . . . . . . . . . 11 ((𝑓:𝑤⟶Fin ∧ 𝑧𝑤) → (𝑓𝑧) ∈ Fin)
4039ralrimiva 3143 . . . . . . . . . 10 (𝑓:𝑤⟶Fin → ∀𝑧𝑤 (𝑓𝑧) ∈ Fin)
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑓𝑧) ∈ Fin)
42 iunfi 9284 . . . . . . . . 9 ((𝑤 ∈ Fin ∧ ∀𝑧𝑤 (𝑓𝑧) ∈ Fin) → 𝑧𝑤 (𝑓𝑧) ∈ Fin)
4335, 41, 42syl2anc 584 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ Fin)
4432, 43elind 4154 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin))
45 simprl 769 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑌 = 𝑤)
46 uniiun 5018 . . . . . . . . . . . . 13 𝑤 = 𝑧𝑤 𝑧
4745, 46eqtrdi 2792 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑌 = 𝑧𝑤 𝑧)
4847xpeq2d 5663 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = (𝑋 × 𝑧𝑤 𝑧))
49 xpiundi 5702 . . . . . . . . . . 11 (𝑋 × 𝑧𝑤 𝑧) = 𝑧𝑤 (𝑋 × 𝑧)
5048, 49eqtrdi 2792 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑋 × 𝑧))
51 simprrr 780 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))
52 xpeq2 5654 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (𝑋 × 𝑢) = (𝑋 × 𝑧))
53 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
5453unieqd 4879 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 (𝑓𝑢) = (𝑓𝑧))
5552, 54sseq12d 3977 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → ((𝑋 × 𝑢) ⊆ (𝑓𝑢) ↔ (𝑋 × 𝑧) ⊆ (𝑓𝑧)))
5655cbvralvw 3225 . . . . . . . . . . . 12 (∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢) ↔ ∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧))
5751, 56sylib 217 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧))
58 ss2iun 4972 . . . . . . . . . . 11 (∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧) → 𝑧𝑤 (𝑋 × 𝑧) ⊆ 𝑧𝑤 (𝑓𝑧))
5957, 58syl 17 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑋 × 𝑧) ⊆ 𝑧𝑤 (𝑓𝑧))
6050, 59eqsstrd 3982 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) ⊆ 𝑧𝑤 (𝑓𝑧))
6118ffvelcdmda 7035 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin))
6223, 61sselid 3942 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ∈ 𝒫 𝑊)
63 elpwi 4567 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ 𝒫 𝑊 → (𝑓𝑧) ⊆ 𝑊)
64 uniss 4873 . . . . . . . . . . . . 13 ((𝑓𝑧) ⊆ 𝑊 (𝑓𝑧) ⊆ 𝑊)
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ⊆ 𝑊)
669ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑋 × 𝑌) = 𝑊)
6765, 66sseqtrrd 3985 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ⊆ (𝑋 × 𝑌))
6867ralrimiva 3143 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
69 iunss 5005 . . . . . . . . . 10 ( 𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌) ↔ ∀𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
7068, 69sylibr 233 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
7160, 70eqssd 3961 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧))
72 iuncom4 4962 . . . . . . . 8 𝑧𝑤 (𝑓𝑧) = 𝑧𝑤 (𝑓𝑧)
7371, 72eqtrdi 2792 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧))
74 unieq 4876 . . . . . . . 8 (𝑣 = 𝑧𝑤 (𝑓𝑧) → 𝑣 = 𝑧𝑤 (𝑓𝑧))
7574rspceeqv 3595 . . . . . . 7 (( 𝑧𝑤 (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
7644, 73, 75syl2anc 584 . . . . . 6 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
7776expr 457 . . . . 5 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = 𝑤) → ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
7877exlimdv 1936 . . . 4 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = 𝑤) → (∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
7978expimpd 454 . . 3 ((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) → ((𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
8079rexlimdva 3152 . 2 (𝜑 → (∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
8117, 80mpd 15 1 (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865   ciun 4954   × cxp 5631  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  Compccmp 22737   ×t ctx 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-fin 8887  df-topgen 17325  df-top 22243  df-bases 22296  df-cmp 22738  df-tx 22913
This theorem is referenced by:  txcmp  22994
  Copyright terms: Public domain W3C validator