MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem2 Structured version   Visualization version   GIF version

Theorem txcmplem2 23527
Description: Lemma for txcmp 23528. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x 𝑋 = 𝑅
txcmp.y 𝑌 = 𝑆
txcmp.r (𝜑𝑅 ∈ Comp)
txcmp.s (𝜑𝑆 ∈ Comp)
txcmp.w (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
txcmp.u (𝜑 → (𝑋 × 𝑌) = 𝑊)
Assertion
Ref Expression
txcmplem2 (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
Distinct variable groups:   𝑣,𝑆   𝑣,𝑌   𝑣,𝑊   𝑣,𝑋
Allowed substitution hints:   𝜑(𝑣)   𝑅(𝑣)

Proof of Theorem txcmplem2
Dummy variables 𝑓 𝑢 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.s . . 3 (𝜑𝑆 ∈ Comp)
2 txcmp.x . . . . 5 𝑋 = 𝑅
3 txcmp.y . . . . 5 𝑌 = 𝑆
4 txcmp.r . . . . . 6 (𝜑𝑅 ∈ Comp)
54adantr 480 . . . . 5 ((𝜑𝑥𝑌) → 𝑅 ∈ Comp)
61adantr 480 . . . . 5 ((𝜑𝑥𝑌) → 𝑆 ∈ Comp)
7 txcmp.w . . . . . 6 (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
87adantr 480 . . . . 5 ((𝜑𝑥𝑌) → 𝑊 ⊆ (𝑅 ×t 𝑆))
9 txcmp.u . . . . . 6 (𝜑 → (𝑋 × 𝑌) = 𝑊)
109adantr 480 . . . . 5 ((𝜑𝑥𝑌) → (𝑋 × 𝑌) = 𝑊)
11 simpr 484 . . . . 5 ((𝜑𝑥𝑌) → 𝑥𝑌)
122, 3, 5, 6, 8, 10, 11txcmplem1 23526 . . . 4 ((𝜑𝑥𝑌) → ∃𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
1312ralrimiva 3121 . . 3 (𝜑 → ∀𝑥𝑌𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
14 unieq 4869 . . . . 5 (𝑣 = (𝑓𝑢) → 𝑣 = (𝑓𝑢))
1514sseq2d 3968 . . . 4 (𝑣 = (𝑓𝑢) → ((𝑋 × 𝑢) ⊆ 𝑣 ↔ (𝑋 × 𝑢) ⊆ (𝑓𝑢)))
163, 15cmpcovf 23276 . . 3 ((𝑆 ∈ Comp ∧ ∀𝑥𝑌𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)) → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))))
171, 13, 16syl2anc 584 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))))
18 simprrl 780 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin))
19 ffn 6652 . . . . . . . . . . 11 (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) → 𝑓 Fn 𝑤)
20 fniunfv 7183 . . . . . . . . . . 11 (𝑓 Fn 𝑤 𝑧𝑤 (𝑓𝑧) = ran 𝑓)
2118, 19, 203syl 18 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) = ran 𝑓)
2218frnd 6660 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓 ⊆ (𝒫 𝑊 ∩ Fin))
23 inss1 4188 . . . . . . . . . . . 12 (𝒫 𝑊 ∩ Fin) ⊆ 𝒫 𝑊
2422, 23sstrdi 3948 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓 ⊆ 𝒫 𝑊)
25 sspwuni 5049 . . . . . . . . . . 11 (ran 𝑓 ⊆ 𝒫 𝑊 ran 𝑓𝑊)
2624, 25sylib 218 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓𝑊)
2721, 26eqsstrd 3970 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ⊆ 𝑊)
28 vex 3440 . . . . . . . . . . 11 𝑤 ∈ V
29 fvex 6835 . . . . . . . . . . 11 (𝑓𝑧) ∈ V
3028, 29iunex 7903 . . . . . . . . . 10 𝑧𝑤 (𝑓𝑧) ∈ V
3130elpw 4555 . . . . . . . . 9 ( 𝑧𝑤 (𝑓𝑧) ∈ 𝒫 𝑊 𝑧𝑤 (𝑓𝑧) ⊆ 𝑊)
3227, 31sylibr 234 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ 𝒫 𝑊)
33 inss2 4189 . . . . . . . . . 10 (𝒫 𝑆 ∩ Fin) ⊆ Fin
34 simplr 768 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑤 ∈ (𝒫 𝑆 ∩ Fin))
3533, 34sselid 3933 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑤 ∈ Fin)
36 inss2 4189 . . . . . . . . . . 11 (𝒫 𝑊 ∩ Fin) ⊆ Fin
37 fss 6668 . . . . . . . . . . 11 ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ (𝒫 𝑊 ∩ Fin) ⊆ Fin) → 𝑓:𝑤⟶Fin)
3818, 36, 37sylancl 586 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑓:𝑤⟶Fin)
39 ffvelcdm 7015 . . . . . . . . . . 11 ((𝑓:𝑤⟶Fin ∧ 𝑧𝑤) → (𝑓𝑧) ∈ Fin)
4039ralrimiva 3121 . . . . . . . . . 10 (𝑓:𝑤⟶Fin → ∀𝑧𝑤 (𝑓𝑧) ∈ Fin)
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑓𝑧) ∈ Fin)
42 iunfi 9233 . . . . . . . . 9 ((𝑤 ∈ Fin ∧ ∀𝑧𝑤 (𝑓𝑧) ∈ Fin) → 𝑧𝑤 (𝑓𝑧) ∈ Fin)
4335, 41, 42syl2anc 584 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ Fin)
4432, 43elind 4151 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin))
45 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑌 = 𝑤)
46 uniiun 5007 . . . . . . . . . . . . 13 𝑤 = 𝑧𝑤 𝑧
4745, 46eqtrdi 2780 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑌 = 𝑧𝑤 𝑧)
4847xpeq2d 5649 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = (𝑋 × 𝑧𝑤 𝑧))
49 xpiundi 5690 . . . . . . . . . . 11 (𝑋 × 𝑧𝑤 𝑧) = 𝑧𝑤 (𝑋 × 𝑧)
5048, 49eqtrdi 2780 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑋 × 𝑧))
51 simprrr 781 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))
52 xpeq2 5640 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (𝑋 × 𝑢) = (𝑋 × 𝑧))
53 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
5453unieqd 4871 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 (𝑓𝑢) = (𝑓𝑧))
5552, 54sseq12d 3969 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → ((𝑋 × 𝑢) ⊆ (𝑓𝑢) ↔ (𝑋 × 𝑧) ⊆ (𝑓𝑧)))
5655cbvralvw 3207 . . . . . . . . . . . 12 (∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢) ↔ ∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧))
5751, 56sylib 218 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧))
58 ss2iun 4960 . . . . . . . . . . 11 (∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧) → 𝑧𝑤 (𝑋 × 𝑧) ⊆ 𝑧𝑤 (𝑓𝑧))
5957, 58syl 17 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑋 × 𝑧) ⊆ 𝑧𝑤 (𝑓𝑧))
6050, 59eqsstrd 3970 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) ⊆ 𝑧𝑤 (𝑓𝑧))
6118ffvelcdmda 7018 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin))
6223, 61sselid 3933 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ∈ 𝒫 𝑊)
63 elpwi 4558 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ 𝒫 𝑊 → (𝑓𝑧) ⊆ 𝑊)
64 uniss 4866 . . . . . . . . . . . . 13 ((𝑓𝑧) ⊆ 𝑊 (𝑓𝑧) ⊆ 𝑊)
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ⊆ 𝑊)
669ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑋 × 𝑌) = 𝑊)
6765, 66sseqtrrd 3973 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ⊆ (𝑋 × 𝑌))
6867ralrimiva 3121 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
69 iunss 4994 . . . . . . . . . 10 ( 𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌) ↔ ∀𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
7068, 69sylibr 234 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
7160, 70eqssd 3953 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧))
72 iuncom4 4950 . . . . . . . 8 𝑧𝑤 (𝑓𝑧) = 𝑧𝑤 (𝑓𝑧)
7371, 72eqtrdi 2780 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧))
74 unieq 4869 . . . . . . . 8 (𝑣 = 𝑧𝑤 (𝑓𝑧) → 𝑣 = 𝑧𝑤 (𝑓𝑧))
7574rspceeqv 3600 . . . . . . 7 (( 𝑧𝑤 (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
7644, 73, 75syl2anc 584 . . . . . 6 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
7776expr 456 . . . . 5 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = 𝑤) → ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
7877exlimdv 1933 . . . 4 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = 𝑤) → (∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
7978expimpd 453 . . 3 ((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) → ((𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
8079rexlimdva 3130 . 2 (𝜑 → (∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
8117, 80mpd 15 1 (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   ciun 4941   × cxp 5617  ran crn 5620   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  Compccmp 23271   ×t ctx 23445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-en 8873  df-dom 8874  df-fin 8876  df-topgen 17347  df-top 22779  df-bases 22831  df-cmp 23272  df-tx 23447
This theorem is referenced by:  txcmp  23528
  Copyright terms: Public domain W3C validator