Step | Hyp | Ref
| Expression |
1 | | txcmp.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ Comp) |
2 | | txcmp.x |
. . . . 5
⊢ 𝑋 = ∪
𝑅 |
3 | | txcmp.y |
. . . . 5
⊢ 𝑌 = ∪
𝑆 |
4 | | txcmp.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Comp) |
5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑅 ∈ Comp) |
6 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ Comp) |
7 | | txcmp.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) |
8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑊 ⊆ (𝑅 ×t 𝑆)) |
9 | | txcmp.u |
. . . . . 6
⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) |
10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑋 × 𝑌) = ∪ 𝑊) |
11 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) |
12 | 2, 3, 5, 6, 8, 10,
11 | txcmplem1 22700 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑢 ∈ 𝑆 (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) |
13 | 12 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ∃𝑢 ∈ 𝑆 (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) |
14 | | unieq 4847 |
. . . . 5
⊢ (𝑣 = (𝑓‘𝑢) → ∪ 𝑣 = ∪
(𝑓‘𝑢)) |
15 | 14 | sseq2d 3949 |
. . . 4
⊢ (𝑣 = (𝑓‘𝑢) → ((𝑋 × 𝑢) ⊆ ∪ 𝑣 ↔ (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢))) |
16 | 3, 15 | cmpcovf 22450 |
. . 3
⊢ ((𝑆 ∈ Comp ∧ ∀𝑥 ∈ 𝑌 ∃𝑢 ∈ 𝑆 (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = ∪ 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) |
17 | 1, 13, 16 | syl2anc 583 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = ∪ 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) |
18 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → 𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin)) |
19 | | ffn 6584 |
. . . . . . . . . . 11
⊢ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) → 𝑓 Fn 𝑤) |
20 | | fniunfv 7102 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑤 → ∪
𝑧 ∈ 𝑤 (𝑓‘𝑧) = ∪ ran 𝑓) |
21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) = ∪ ran 𝑓) |
22 | 18 | frnd 6592 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ran 𝑓 ⊆ (𝒫 𝑊 ∩ Fin)) |
23 | | inss1 4159 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑊 ∩
Fin) ⊆ 𝒫 𝑊 |
24 | 22, 23 | sstrdi 3929 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ran 𝑓 ⊆ 𝒫 𝑊) |
25 | | sspwuni 5025 |
. . . . . . . . . . 11
⊢ (ran
𝑓 ⊆ 𝒫 𝑊 ↔ ∪ ran 𝑓 ⊆ 𝑊) |
26 | 24, 25 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ ran
𝑓 ⊆ 𝑊) |
27 | 21, 26 | eqsstrd 3955 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ⊆ 𝑊) |
28 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
29 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝑓‘𝑧) ∈ V |
30 | 28, 29 | iunex 7784 |
. . . . . . . . . 10
⊢ ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ V |
31 | 30 | elpw 4534 |
. . . . . . . . 9
⊢ (∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ 𝒫 𝑊 ↔ ∪
𝑧 ∈ 𝑤 (𝑓‘𝑧) ⊆ 𝑊) |
32 | 27, 31 | sylibr 233 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ 𝒫 𝑊) |
33 | | inss2 4160 |
. . . . . . . . . 10
⊢
(𝒫 𝑆 ∩
Fin) ⊆ Fin |
34 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) |
35 | 33, 34 | sselid 3915 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → 𝑤 ∈ Fin) |
36 | | inss2 4160 |
. . . . . . . . . . 11
⊢
(𝒫 𝑊 ∩
Fin) ⊆ Fin |
37 | | fss 6601 |
. . . . . . . . . . 11
⊢ ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ (𝒫 𝑊 ∩ Fin) ⊆ Fin) →
𝑓:𝑤⟶Fin) |
38 | 18, 36, 37 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → 𝑓:𝑤⟶Fin) |
39 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢ ((𝑓:𝑤⟶Fin ∧ 𝑧 ∈ 𝑤) → (𝑓‘𝑧) ∈ Fin) |
40 | 39 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝑓:𝑤⟶Fin → ∀𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ Fin) |
41 | 38, 40 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∀𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ Fin) |
42 | | iunfi 9037 |
. . . . . . . . 9
⊢ ((𝑤 ∈ Fin ∧ ∀𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ Fin) → ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ Fin) |
43 | 35, 41, 42 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ Fin) |
44 | 32, 43 | elind 4124 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ (𝒫 𝑊 ∩ Fin)) |
45 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → 𝑌 = ∪ 𝑤) |
46 | | uniiun 4984 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑤 =
∪ 𝑧 ∈ 𝑤 𝑧 |
47 | 45, 46 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → 𝑌 = ∪ 𝑧 ∈ 𝑤 𝑧) |
48 | 47 | xpeq2d 5610 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → (𝑋 × 𝑌) = (𝑋 × ∪
𝑧 ∈ 𝑤 𝑧)) |
49 | | xpiundi 5648 |
. . . . . . . . . . 11
⊢ (𝑋 × ∪ 𝑧 ∈ 𝑤 𝑧) = ∪ 𝑧 ∈ 𝑤 (𝑋 × 𝑧) |
50 | 48, 49 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → (𝑋 × 𝑌) = ∪
𝑧 ∈ 𝑤 (𝑋 × 𝑧)) |
51 | | simprrr 778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)) |
52 | | xpeq2 5601 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (𝑋 × 𝑢) = (𝑋 × 𝑧)) |
53 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → (𝑓‘𝑢) = (𝑓‘𝑧)) |
54 | 53 | unieqd 4850 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → ∪ (𝑓‘𝑢) = ∪ (𝑓‘𝑧)) |
55 | 52, 54 | sseq12d 3950 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → ((𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢) ↔ (𝑋 × 𝑧) ⊆ ∪ (𝑓‘𝑧))) |
56 | 55 | cbvralvw 3372 |
. . . . . . . . . . . 12
⊢
(∀𝑢 ∈
𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢) ↔ ∀𝑧 ∈ 𝑤 (𝑋 × 𝑧) ⊆ ∪ (𝑓‘𝑧)) |
57 | 51, 56 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∀𝑧 ∈ 𝑤 (𝑋 × 𝑧) ⊆ ∪ (𝑓‘𝑧)) |
58 | | ss2iun 4939 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑤 (𝑋 × 𝑧) ⊆ ∪ (𝑓‘𝑧) → ∪
𝑧 ∈ 𝑤 (𝑋 × 𝑧) ⊆ ∪
𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧)) |
59 | 57, 58 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ 𝑧 ∈ 𝑤 (𝑋 × 𝑧) ⊆ ∪
𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧)) |
60 | 50, 59 | eqsstrd 3955 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → (𝑋 × 𝑌) ⊆ ∪ 𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧)) |
61 | 18 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) ∧ 𝑧 ∈ 𝑤) → (𝑓‘𝑧) ∈ (𝒫 𝑊 ∩ Fin)) |
62 | 23, 61 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) ∧ 𝑧 ∈ 𝑤) → (𝑓‘𝑧) ∈ 𝒫 𝑊) |
63 | | elpwi 4539 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑧) ∈ 𝒫 𝑊 → (𝑓‘𝑧) ⊆ 𝑊) |
64 | | uniss 4844 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑧) ⊆ 𝑊 → ∪ (𝑓‘𝑧) ⊆ ∪ 𝑊) |
65 | 62, 63, 64 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) ∧ 𝑧 ∈ 𝑤) → ∪ (𝑓‘𝑧) ⊆ ∪ 𝑊) |
66 | 9 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) ∧ 𝑧 ∈ 𝑤) → (𝑋 × 𝑌) = ∪ 𝑊) |
67 | 65, 66 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) ∧ 𝑧 ∈ 𝑤) → ∪ (𝑓‘𝑧) ⊆ (𝑋 × 𝑌)) |
68 | 67 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∀𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧) ⊆ (𝑋 × 𝑌)) |
69 | | iunss 4971 |
. . . . . . . . . 10
⊢ (∪ 𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧) ⊆ (𝑋 × 𝑌) ↔ ∀𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧) ⊆ (𝑋 × 𝑌)) |
70 | 68, 69 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∪ 𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧) ⊆ (𝑋 × 𝑌)) |
71 | 60, 70 | eqssd 3934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → (𝑋 × 𝑌) = ∪
𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧)) |
72 | | iuncom4 4929 |
. . . . . . . 8
⊢ ∪ 𝑧 ∈ 𝑤 ∪ (𝑓‘𝑧) = ∪ ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) |
73 | 71, 72 | eqtrdi 2795 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → (𝑋 × 𝑌) = ∪ ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧)) |
74 | | unieq 4847 |
. . . . . . . 8
⊢ (𝑣 = ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) → ∪ 𝑣 = ∪
∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧)) |
75 | 74 | rspceeqv 3567 |
. . . . . . 7
⊢
((∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧) ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑋 × 𝑌) = ∪ ∪ 𝑧 ∈ 𝑤 (𝑓‘𝑧)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣) |
76 | 44, 73, 75 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = ∪ 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣) |
77 | 76 | expr 456 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = ∪ 𝑤) → ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣)) |
78 | 77 | exlimdv 1937 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = ∪ 𝑤) → (∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣)) |
79 | 78 | expimpd 453 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ (𝒫 𝑆 ∩ Fin)) → ((𝑌 = ∪ 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣)) |
80 | 79 | rexlimdva 3212 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = ∪ 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢 ∈ 𝑤 (𝑋 × 𝑢) ⊆ ∪ (𝑓‘𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣)) |
81 | 17, 80 | mpd 15 |
1
⊢ (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣) |