MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem2 Structured version   Visualization version   GIF version

Theorem txcmplem2 22247
Description: Lemma for txcmp 22248. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x 𝑋 = 𝑅
txcmp.y 𝑌 = 𝑆
txcmp.r (𝜑𝑅 ∈ Comp)
txcmp.s (𝜑𝑆 ∈ Comp)
txcmp.w (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
txcmp.u (𝜑 → (𝑋 × 𝑌) = 𝑊)
Assertion
Ref Expression
txcmplem2 (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
Distinct variable groups:   𝑣,𝑆   𝑣,𝑌   𝑣,𝑊   𝑣,𝑋
Allowed substitution hints:   𝜑(𝑣)   𝑅(𝑣)

Proof of Theorem txcmplem2
Dummy variables 𝑓 𝑢 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.s . . 3 (𝜑𝑆 ∈ Comp)
2 txcmp.x . . . . 5 𝑋 = 𝑅
3 txcmp.y . . . . 5 𝑌 = 𝑆
4 txcmp.r . . . . . 6 (𝜑𝑅 ∈ Comp)
54adantr 484 . . . . 5 ((𝜑𝑥𝑌) → 𝑅 ∈ Comp)
61adantr 484 . . . . 5 ((𝜑𝑥𝑌) → 𝑆 ∈ Comp)
7 txcmp.w . . . . . 6 (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
87adantr 484 . . . . 5 ((𝜑𝑥𝑌) → 𝑊 ⊆ (𝑅 ×t 𝑆))
9 txcmp.u . . . . . 6 (𝜑 → (𝑋 × 𝑌) = 𝑊)
109adantr 484 . . . . 5 ((𝜑𝑥𝑌) → (𝑋 × 𝑌) = 𝑊)
11 simpr 488 . . . . 5 ((𝜑𝑥𝑌) → 𝑥𝑌)
122, 3, 5, 6, 8, 10, 11txcmplem1 22246 . . . 4 ((𝜑𝑥𝑌) → ∃𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
1312ralrimiva 3149 . . 3 (𝜑 → ∀𝑥𝑌𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
14 unieq 4811 . . . . 5 (𝑣 = (𝑓𝑢) → 𝑣 = (𝑓𝑢))
1514sseq2d 3947 . . . 4 (𝑣 = (𝑓𝑢) → ((𝑋 × 𝑢) ⊆ 𝑣 ↔ (𝑋 × 𝑢) ⊆ (𝑓𝑢)))
163, 15cmpcovf 21996 . . 3 ((𝑆 ∈ Comp ∧ ∀𝑥𝑌𝑢𝑆 (𝑥𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)) → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))))
171, 13, 16syl2anc 587 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))))
18 simprrl 780 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin))
19 ffn 6487 . . . . . . . . . . 11 (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) → 𝑓 Fn 𝑤)
20 fniunfv 6984 . . . . . . . . . . 11 (𝑓 Fn 𝑤 𝑧𝑤 (𝑓𝑧) = ran 𝑓)
2118, 19, 203syl 18 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) = ran 𝑓)
2218frnd 6494 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓 ⊆ (𝒫 𝑊 ∩ Fin))
23 inss1 4155 . . . . . . . . . . . 12 (𝒫 𝑊 ∩ Fin) ⊆ 𝒫 𝑊
2422, 23sstrdi 3927 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓 ⊆ 𝒫 𝑊)
25 sspwuni 4985 . . . . . . . . . . 11 (ran 𝑓 ⊆ 𝒫 𝑊 ran 𝑓𝑊)
2624, 25sylib 221 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ran 𝑓𝑊)
2721, 26eqsstrd 3953 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ⊆ 𝑊)
28 vex 3444 . . . . . . . . . . 11 𝑤 ∈ V
29 fvex 6658 . . . . . . . . . . 11 (𝑓𝑧) ∈ V
3028, 29iunex 7651 . . . . . . . . . 10 𝑧𝑤 (𝑓𝑧) ∈ V
3130elpw 4501 . . . . . . . . 9 ( 𝑧𝑤 (𝑓𝑧) ∈ 𝒫 𝑊 𝑧𝑤 (𝑓𝑧) ⊆ 𝑊)
3227, 31sylibr 237 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ 𝒫 𝑊)
33 inss2 4156 . . . . . . . . . 10 (𝒫 𝑆 ∩ Fin) ⊆ Fin
34 simplr 768 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑤 ∈ (𝒫 𝑆 ∩ Fin))
3533, 34sseldi 3913 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑤 ∈ Fin)
36 inss2 4156 . . . . . . . . . . 11 (𝒫 𝑊 ∩ Fin) ⊆ Fin
37 fss 6501 . . . . . . . . . . 11 ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ (𝒫 𝑊 ∩ Fin) ⊆ Fin) → 𝑓:𝑤⟶Fin)
3818, 36, 37sylancl 589 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑓:𝑤⟶Fin)
39 ffvelrn 6826 . . . . . . . . . . 11 ((𝑓:𝑤⟶Fin ∧ 𝑧𝑤) → (𝑓𝑧) ∈ Fin)
4039ralrimiva 3149 . . . . . . . . . 10 (𝑓:𝑤⟶Fin → ∀𝑧𝑤 (𝑓𝑧) ∈ Fin)
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑓𝑧) ∈ Fin)
42 iunfi 8796 . . . . . . . . 9 ((𝑤 ∈ Fin ∧ ∀𝑧𝑤 (𝑓𝑧) ∈ Fin) → 𝑧𝑤 (𝑓𝑧) ∈ Fin)
4335, 41, 42syl2anc 587 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ Fin)
4432, 43elind 4121 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin))
45 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑌 = 𝑤)
46 uniiun 4945 . . . . . . . . . . . . 13 𝑤 = 𝑧𝑤 𝑧
4745, 46eqtrdi 2849 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑌 = 𝑧𝑤 𝑧)
4847xpeq2d 5549 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = (𝑋 × 𝑧𝑤 𝑧))
49 xpiundi 5586 . . . . . . . . . . 11 (𝑋 × 𝑧𝑤 𝑧) = 𝑧𝑤 (𝑋 × 𝑧)
5048, 49eqtrdi 2849 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑋 × 𝑧))
51 simprrr 781 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))
52 xpeq2 5540 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (𝑋 × 𝑢) = (𝑋 × 𝑧))
53 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
5453unieqd 4814 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 (𝑓𝑢) = (𝑓𝑧))
5552, 54sseq12d 3948 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → ((𝑋 × 𝑢) ⊆ (𝑓𝑢) ↔ (𝑋 × 𝑧) ⊆ (𝑓𝑧)))
5655cbvralvw 3396 . . . . . . . . . . . 12 (∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢) ↔ ∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧))
5751, 56sylib 221 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧))
58 ss2iun 4899 . . . . . . . . . . 11 (∀𝑧𝑤 (𝑋 × 𝑧) ⊆ (𝑓𝑧) → 𝑧𝑤 (𝑋 × 𝑧) ⊆ 𝑧𝑤 (𝑓𝑧))
5957, 58syl 17 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑋 × 𝑧) ⊆ 𝑧𝑤 (𝑓𝑧))
6050, 59eqsstrd 3953 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) ⊆ 𝑧𝑤 (𝑓𝑧))
6118ffvelrnda 6828 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin))
6223, 61sseldi 3913 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ∈ 𝒫 𝑊)
63 elpwi 4506 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ 𝒫 𝑊 → (𝑓𝑧) ⊆ 𝑊)
64 uniss 4808 . . . . . . . . . . . . 13 ((𝑓𝑧) ⊆ 𝑊 (𝑓𝑧) ⊆ 𝑊)
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ⊆ 𝑊)
669ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑋 × 𝑌) = 𝑊)
6765, 66sseqtrrd 3956 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) ∧ 𝑧𝑤) → (𝑓𝑧) ⊆ (𝑋 × 𝑌))
6867ralrimiva 3149 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∀𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
69 iunss 4932 . . . . . . . . . 10 ( 𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌) ↔ ∀𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
7068, 69sylibr 237 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → 𝑧𝑤 (𝑓𝑧) ⊆ (𝑋 × 𝑌))
7160, 70eqssd 3932 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧))
72 iuncom4 4889 . . . . . . . 8 𝑧𝑤 (𝑓𝑧) = 𝑧𝑤 (𝑓𝑧)
7371, 72eqtrdi 2849 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧))
74 unieq 4811 . . . . . . . 8 (𝑣 = 𝑧𝑤 (𝑓𝑧) → 𝑣 = 𝑧𝑤 (𝑓𝑧))
7574rspceeqv 3586 . . . . . . 7 (( 𝑧𝑤 (𝑓𝑧) ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑋 × 𝑌) = 𝑧𝑤 (𝑓𝑧)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
7644, 73, 75syl2anc 587 . . . . . 6 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ (𝑌 = 𝑤 ∧ (𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
7776expr 460 . . . . 5 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = 𝑤) → ((𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
7877exlimdv 1934 . . . 4 (((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) ∧ 𝑌 = 𝑤) → (∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢)) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
7978expimpd 457 . . 3 ((𝜑𝑤 ∈ (𝒫 𝑆 ∩ Fin)) → ((𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
8079rexlimdva 3243 . 2 (𝜑 → (∃𝑤 ∈ (𝒫 𝑆 ∩ Fin)(𝑌 = 𝑤 ∧ ∃𝑓(𝑓:𝑤⟶(𝒫 𝑊 ∩ Fin) ∧ ∀𝑢𝑤 (𝑋 × 𝑢) ⊆ (𝑓𝑢))) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣))
8117, 80mpd 15 1 (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   ciun 4881   × cxp 5517  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  Compccmp 21991   ×t ctx 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-fin 8496  df-topgen 16709  df-top 21499  df-bases 21551  df-cmp 21992  df-tx 22167
This theorem is referenced by:  txcmp  22248
  Copyright terms: Public domain W3C validator